• Title/Summary/Keyword: Quercetin

Search Result 1,155, Processing Time 0.024 seconds

Antioxidative Constituents of Hedyotis diffusa Willd.

  • Permana, Dharma;Lajis, Nordin Hj.;Abas, Faridah;Othman, A. Ghafar;Ahmad, Rohaya;Kitajima, Mariko;Takayama, Hiromitsu;Aimi, Norio
    • Natural Product Sciences
    • /
    • v.9 no.1
    • /
    • pp.7-9
    • /
    • 2003
  • The antioxidative constituents isolated from Hedyotis diffusa were identified as quercetin 3-O-${\beta}$-rutinoside (1) and quercetin 3-O-${\beta}$-glucoside (2). We also isolated asperuloside (3) from this plant. Identification was done based on spectroscopic analysis. Quercetin 3-O-${\beta}$-rutinoside was the stronger antioxidant than quercetin 3-O-${\beta}$-glycoside while asperuloside was inactive.

Antioxidative Activities and Nitrite-scavenging Abilities of Some Phenolic Compounds (일부 페놀성 화합물의 항산화효과 및 아질산염 소거능)

  • Ahn, Sun-Il;Bok, Jin-Heuing;Son, Jong-Youn
    • Korean journal of food and cookery science
    • /
    • v.23 no.1 s.97
    • /
    • pp.19-24
    • /
    • 2007
  • This study investigated the antioxidant and synergistic effects and nitrite scavenging ability of some phenolic compounds(catechin, rutin, quercetin and naringin), The electron donating abilities of naringin, quercetin, rutin and catechin were 6.7%, 92.8%, 87.6% and 92.21%, respectively, The antioxidant activities in O/W emulsion substrates were in order of rutin > quercetin > catechin > naringin. The antioxidant effect of rutin was stranger than that of BHT or ${\alpha}$-tocopherol. ${\alpha}$-tocopherol showed synergistic effect with catechin and quercetin, but ascorbic acid not showed effect. The nitrite scavenging abilities of catechin, quercetin, rutin and naringin were 99.9%, 98.6%, 25.5% and 0.2%, respectively. The nitrite scavenging abilities of quercetin and actechin were very potent as compared with those of BHT and ascorbic acid.

Viscozyme L aided flavonoid extraction and identification of quercetin from Saururus chinensis (Lour.) Baill

  • Zheng, Hu-Zhe;Kwon, Sun-Young;Chung, Shin-Kyo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.197-201
    • /
    • 2020
  • In order to enhance the extraction efficiency of flavonoid from Saururus chinensis, carbohydrate-hydrolyzing enzyme Viscozyme L aided extraction techniques have been studied. Then flavonoid composition, as well as quercetin, were also identified using UV/Vis, HPLC/MS, and 1H-NMR. The results showed that favorable extraction conditions were Viscozyme L concentration of 0.25 mg/g, pH 4.2, reaction at 45 ℃ for 12 h. Under the favorable extraction condition, total flavonoid yield (37.9 mg/g) and quercetin yield (0.86 mg/g) increased by about 2.0 and 9.6 times, respectively, compared to control group. Interestingly, as a significant flavonoid of S. chinensis, flavonoid glycones rutin was hydrolyzed to aglycones quercetin by Viscozyme L. These findings provide scientific and theoretical support for the development quercetin-rich products, which was quickly absorbed by the human body than rutin.

Flavonol Glycosides from Parthenocissus tricuspidata Leaves (담쟁이덩굴엽의 플라보놀 배당체)

  • 황현경;성환길;황완균;김일혁
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.289-296
    • /
    • 1995
  • For the investigation of medicinal resources the studies were carried out to evaluated the pharmaco-constituents in the Leaves of Parthenocissus tricuspidata(Vitaceae), of which leaves have been used in Korea as folk remedies for the treatments of arthritis, jaundice, toothache, neuralgia, and etc. From 1-butanol fraction of the MeOH extract, Compound I ($C_{21}H_{18}O_{13}$, Quercetin-3-O-$\beta$-D-glucuronopyranoside), Compound II ($C_{21}H_{20}O_{12}$, Quercetin-3-O-$\beta$-D-glucopyranoside) and Compound III ($C_{25}H_{28}O_{12}$, Quercetin-3-O-(6"-n-butyl)-$\beta$-D-glucuronopyranoside) were isolated by column chromatographic separation using Sephadex LH-20 and ODS gel. Their structures were elucidated through instrumental analyses, such as $^{1}H$-NMR, $^{13}C$-NMR, IR, UV, El-Mass, FAB-Mass and GC. Especially compound III was Flavonol glycoside and named parthenosin.

  • PDF

Quercetin Prevents Hydrogen Peroxide-induced Necrotic and Apoptotic Cell Death in Human Colonic Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.4
    • /
    • pp.161-170
    • /
    • 2011
  • Quercetin is one of the most distributed flavonoids in the plant kingdom and occurs naturally in a wide range of fruits and vegetables. This study was undertaken to determine whether quercetin exerts beneficial effect against necrotic and apoptotic cell death induced by hydrogen peroxide ($H_2O2$) in intestinal cells using the human-derived cultured T84 colonic epithelial cell line. Necrotic cell death was induced by exposing cells to 0.5 mM $H_2O_2$ for 2 h and apoptosis was induced by incubating cells in normal culture medium for 18 h following exposure of cells to 0.5 mM $H_2O2$ for 2 h. Cell viability was evaluated by the trypan blue exclusion assay and apoptosis was assessed by Hoechst 33258 staining and flow cytometry. $H_2O_2$ induced necrotic cell death in a time and dose-dependent fashion. Both necrotic and apoptotic cell deaths were not prevented by the antioxidants N,N'-diphenyl-p-phenylenediamine(DPPD) and Trolox, whereas both cell deaths induced by the organic hydroperoxide t-butylhydroperoxide (tBHP) were prevented by DPPD, suggesting that $H_2O_2$ induces cell death through a lipid peroxidation-independent mechanism. $H_2O2$-induced necrotic death was prevented by deferoxamine and 3-aminobenzamide, while the apoptotic cell death was not affected by these agents. Quercetin prevented both necrotic and apoptotic cell deaths induced by $H_2O_2$ in a dose-dependent manner. $H_2O_2$ caused activation of poly (ADP-ribose) polmerase (PARP), which was inhibited by deferoxamine, 3-aminobenzamide, and quercetin, but not DPPD. These results indicate that quercetin inhibits both necroticand apoptotic deaths of T84 cells. The anti-necrotic effect of quercetin may be attributed to its iron chelator activity rather than a direct $H_2O_2$ scavenging capacity and antioxidant. The present study suggests that quercetin may play a therapeutic role in the treatment of human gastrointestinal diseases mediated by oxidants.

  • PDF

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.

Comparative Effects of Dietary Quercetin and Rutin in Rats Fed with the Lieber-DeCarli Ethanol Diet

  • Seo, Su-Jeong;Park, Cheol-Ho;Ko, In-Young;Jeong, Yeon-Ho;Choi, Yong-Soon
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.222-226
    • /
    • 2017
  • Flavonoids including quercetin and rutin are a group of naturally occurring compounds widely distributed in plants, especially in buckwheat. Thus, cereal and the leaf of the plant have increasingly used as a source of nutritional and functional foods such as noodle, cake or soup in Korea, Japan and other countries. This study investigated comparative effects of dietary rutin rich in buckwheat and its aglycone, quercetin, on serum biomarkers and antioxidant parameters in rats treated with chronic ethanol. Rats were fed with the liquid diets prepared by the method of Lieber Decarli. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities increased significantly by alcohol feeding. Dietary flavonoids including rutin, quercetin and their mixtures (1/1, v/v) decreased significantly the activities of serum ALT whereas the feeding of quercetin decreased only the activity of serum AST. The concentration of serum malondialdehydes elevated by chronic alcohol feeding decreased markedly in all the experimental groups that were fed with the flavonoids; however, the combined administration of quercetin or rutin, but not that of rutin or quercetin alone decreased significantly the concentration of liver malondialdehydes to the normal range in rats fed without ethanol. Our results suggested that dietary combined mixture of rutin and quercetin might be effective in ameliorating adverse responses seen in rats exposed to ethanol chronically.

Relationship Linking Dietary Quercetin and Roughage to Concentrate Ratio in Feed Utilization, Ruminal Fermentation Traits and Immune Responses in Korean Indigenous Goats

  • Cho, Chi Hyun;Yang, Byung Mo;Park, No Seong;Lee, Hyung Suk;Song, Minho;Yi, Young Joo;Heo, Jung Min;Wickramasuriya, Samiru Sudharaka;Cho, Hyun Min;Lee, Soo Kee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • A total of nine Korean indigenous goats were used in a cross-over arrangement to give nine replicates per treatment, and they were housed individually assigned to 1 of 9 dietary treatments. Nine treatments were 0, 500, and 1000 ppm of quercetin supplementation in diets by mixing roughage and concentrate with different ratios (RC ratio) of 3:7 (RC 30), 5:5 (RC 50) and 7:3 (RC 70). Nutrient utilizations of dry matter, crude fat and NDF were not affected by neither RC ratio nor dietary quercetin (p>0.05), but the rate of crude protein and ADF increased in animals in RC 70 group regardless of quercetin supplementation (p<0.05). In addition, higher RC ratio increased (p<0.05) N retention and N retention rate. Total VFA, acetic acid, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid and valeric acid contents were not affected (p>0.05) by dietary quercetin. Meanwhile, lower total cholesterol level exhibited in animals in RC 70 group compared to RC 30 or 50 groups, unrelated to dietary quercetin (p<0.05), however other plasma parameters were not influenced (p>0.05) by RC ratio and dietary quercetin. Our results indicated that both RC ratio and dietary quercetin may not directly affect the production indices and immune responses in Korean indigenous goat.

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment

  • Ya-Jen Chiu;Yu-Shan Teng;Chiung-Mei Chen;Ying-Chieh Sun;Hsiu Mei Hsieh-Li;Kuo-Hsuan Chang;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.285-297
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid β (Aβ), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aβ folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aβ-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.