• 제목/요약/키워드: Quench characteristics

검색결과 220건 처리시간 0.033초

배전계통 적용을 위한 초전도케이블의 전기적 특성요건과 규격검토 (A Suggestion of Standards and factors applied Distributed Power System to electrical characteristic of HTS cable)

  • 이현철;이근준;황시돌;손승호;임지현;정성원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.165_166
    • /
    • 2009
  • A HTS(High Temperature Superconductor) Cable is regarded as the most underground power to respond higher power density delivery system. This paper discussed electrical characteristic and standards of HTS Cable system. Various HTS cable characteristics are examined[3-5], ad compared with XLPE cable characteristics on possible distribution system environment. HTS cable is required to stabilize thermal condition for superconducting status, possible improper operating condition which affects quench, unbalanced, and harmonics impacts are discussed. HTS cable is customer designed cable which shall be implemented in special requirement of power system, the standard origination process requires to establish a series of methodology including design manufacturing, testing and installation.

  • PDF

초미립 분말의 제조를 위한 열플라즈마 공정 (Thermal Plasma Process for Producing Ultra-fine Powders)

  • 오성민;박동화
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.305-311
    • /
    • 2005
  • 열플라즈마 공정은 고온, 고활성, 초급냉 등의 탁월한 특징을 갖고 있으며, 다양한 분야에 적용되고 있다. 본 총설에서는 열플라즈마 공정의 특징과 초미립 분말의 제조를 위한 시스템의 구성을 기술한다. 여기에는 금속, 세라믹, 복합 초미립 분말이 포함되며, 공정의 개발을 위하여 요구되는 핵심기술에 대하여 논의한다. 저자 등은 열플라즈마를 이용하여 다양한 형태의 고품질 초미립 분말을 제조하는 공정의 가능성을 제시하고자 하였다.

배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션 (Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

매트릭스형 초전도 전류제한기의 리액터의 턴수 및 션트저항 증가에 따른 퀜치특성 분석 (Analysis of Quench Characteristics according to increment of turn number of a reactor and shunt resistors of the Matrix-type Superconductor Fault Current Limiter)

  • 이주형;오금곤;정수복;박형민;조용선;정병익;최효상
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.332-334
    • /
    • 2008
  • The matrix-type superconducting fault current limiter (SFCL) using YBCO thin film consists of the trigger and current-limiting parts. We fabricated the matrix-type SFCL with the integrated current limiting modules. we carried out the experiment of matrix-type SFCL with the integrated current limiting modules connected in series or parallel. We saw current characteristics due to ratio of change the shunt resistance and turns. We confirmed that the difference of critical current between superconducting units was decreased by increment of current flowing into the reactor which applied the magnetic field into the superconducting units..

  • PDF

Operation characteristics of a fault current limiter by high speed interrupter and a superconducting element

  • Im, I.G.;Jung, I.S.;Choi, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권3호
    • /
    • pp.10-14
    • /
    • 2014
  • Due to continuous increase of electric power consumption, couple of resolutions for improving accuracy in power system like line separation are being studied. The increase of the power demand can cause problems such as supply difficulties of the electricity and broadband outages, failure, etc. When a fault occurs in the power system, a fault current also increases. Fault current creates problems like reduction of lifespan and failure on the power system. In order to resolve these problems, the reduction of initial fault current using the characteristics of superconducting element was applied to fault current limiter. We applied the system to high speed fault current limiter. We found that the superconducting element effectively reduced initial fault current and the fault current was limited by changing operation of high speed interrupter.

저항형과 유도형 한류기의 전류제한특성에 대한 EMTDC 해석 (EMTDC simulation for current limiting characteristics of the resistive and inductive SFCL)

  • 최효상;황시돌;현옥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.255-258
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100 $\Omega$ of quench impedance for a single line-to-ground fault. which accounts for about 70% of the total power line faults, in the 154 kV transmission system. The fault simulation at the phase angles 0$^{\circ}$, 45$^{\circ}$, and 90$^{\circ}$ showed that the resistive SFCL limited the fault current less than 15 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 12 KA, but with 3 kA of DC component which decreased to zero in 5 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션 (The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter)

  • 주민석;이상진;오윤상;고태국
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF

중성점을 이용한 변압기형 초전도 한류기의 전류제한 특성 분석 (Current Limiting Characteristics of transformer type SFCL using neutral line)

  • 조용선;최효상;박형민;이주형;정병익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.2090-2091
    • /
    • 2007
  • We investigated the characteristics of transformer type SFCL with neutral line. The transformer type SFCL having neutral line has achieved the simultaneous quench because the secondary winding has acted as parallel reactor. The fault current of SFCL was limited according to ratio of turn number between primary and secondary windings. Therefore, the power burden of superconducting element can be reduced by reduction of ratio of turn number between primary and secondary windings. As a result, we could expect reduction of it's volume in the transformer type SFCL.

  • PDF

일체화된 삼상 자속구속형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석 (Analysis of Current Limiting Characteristics According to Fault Angles in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 박충렬;두호익;임성우;현옥배;임성훈;박형민;조용선;남긍현;이나영;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.255-256
    • /
    • 2006
  • In this paper, we investigated the. characteristics of fault current limiting according to fault angle in the integrated three-phase flux-lock type SFCL in fault types such as the single-line-to-ground fault, the double-line-to-ground fault and the three-line-to-ground fault. When the SFCL is operating under normal condition, the magnetic flux generated between primary and secondary coils of each single phase is canceled out perfectly, so that the impedance of the SFCL is also not generated and the power system can be operated normally without any loss, However, if a fault occurs even in any phase out of three phases, quench happened in SFCL elements and the current flowing secondary coil is restricted abruptly. Finally, the balance of magnetic flux in whole SFCL system is destroyed, and the fault currents in every phase could be limited at the same time irrespective of the fault types. As a result, the developed SFCL in this study were operated normally as expected and the purpose of the integration of 3 phase current limiting was also achieved successfully. However, the fault current limiting characteristics of the SFCL was dependant on the quench characteristics of HTSC elements in each phase, and it was expected that the improvement of the SFCL could be possible through the introduction of HTSC elements which have better critical characteristics.

  • PDF

모의전력계통에 적용된 두 개의 자기결합 회로를 갖는 직렬연결형 초전도 전류제한기의 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of Series Connection-type SFCL with Two Magnetically Coupled Circuits Applied into a Simulated Power System)

  • 고석철;이신원
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.68-72
    • /
    • 2013
  • The series connection-type superconducting fault current limiter (SFCL) with two magnetically coupled circuits was suggested and its effectiveness through the analysis on the current limiting and recovery characteristics was described. The fault current limiting characteristics of the proposed SFCL as well as the load voltage sag compensating characteristics according to the winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the series connection-type SFCL were carried out. The series connection-type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag compensating operations through the fast quench occurrence right after the fault appears and the fast recovery operation after the fault removes than that with the subtractive polarity winding.