Thermal Plasma Process for Producing Ultra-fine Powders

초미립 분말의 제조를 위한 열플라즈마 공정

  • Oh, Seung-Min (Department of Chemical Engineering, Inha University) ;
  • Park, Dong-Wha (Metal Powder Division, Daejoo Electronic Materials Co., Ltd.)
  • 오성민 (인하대학교 화학공학과 플라즈마공정연구실) ;
  • 박동화 (대주전자재료 금속분말사업부)
  • Received : 2005.05.13
  • Published : 2005.06.10

Abstract

The thermal plasma process has excellent characteristics such as high temperature, high chemical activity and rapid quench, and has been applied to various fields. In this review, we briefly describe the characteristics for the process and the system components for producing ultra-fine powders including metal, ceramic, and composites. The key technology for the process will be discussed. We aimed to demonstrate the feasibility of the process for producing high quality ultra-fine powders using thermal plasma.

열플라즈마 공정은 고온, 고활성, 초급냉 등의 탁월한 특징을 갖고 있으며, 다양한 분야에 적용되고 있다. 본 총설에서는 열플라즈마 공정의 특징과 초미립 분말의 제조를 위한 시스템의 구성을 기술한다. 여기에는 금속, 세라믹, 복합 초미립 분말이 포함되며, 공정의 개발을 위하여 요구되는 핵심기술에 대하여 논의한다. 저자 등은 열플라즈마를 이용하여 다양한 형태의 고품질 초미립 분말을 제조하는 공정의 가능성을 제시하고자 하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. R. W. Siegel, Nanostructured Mater., 3, 1 (1993) https://doi.org/10.1016/0965-9773(93)90058-J
  2. J. Ding, T. Tsuzuki, and P. G. McCormick, J. Am. Ceram. Soc., 79, 2956 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08731.x
  3. M. Miki, T. Yamasaki, and Y. Going, Mater. Trans. JIM, 33, 839 (1992) https://doi.org/10.2320/matertrans1989.33.839
  4. P. Mattrazzi, D. Basset, F. Miani, and G. Le Caer, Nanostructured Mater., 2, 217 (1993) https://doi.org/10.1016/0965-9773(93)90149-6
  5. M. Simoneau, G. L. Esperance, M. L. Trudeau, and R. Schulz, J. Mater. Res., 9, 535 (1994) https://doi.org/10.1557/JMR.1994.0535
  6. J. Zabicky, L. Zevin, E. Simon, Z. Shneivais, U. Sason, L. abramovich, G. Ondracek, M. Schuller, and M. Fredle, Nanostructured Mater., 3, 77 (1993)
  7. C. C. Wang and I. Y. Ying, Chem. Mater., 11, 3113 (1998) https://doi.org/10.1021/cm990180f
  8. H. S. Lim, Y.-H. Lee, J.-Y. Son, Y.-S. Yu, D.-H. Lee, and D.-D. Sung, J. Korean Ind. Eng. Chem., 16, 187 (2005)
  9. W. J. Hwa, S. T. Jun, Y. B. Lee, H. C. Park, K. H. Kim, and S. S. Park, J. Korean Ind. Eng. Chem., 15, 429 (2004)
  10. S. Komament, R. Pidugu, Q. H. Li, and R. Roy, J. Mater. Res., 10, 1687 (1995) https://doi.org/10.1557/JMR.1995.1687
  11. C. D. Terwilliger and Y.-M. Chamg, Nanostructured Mater., 4, 651 (1994) https://doi.org/10.1016/0965-9773(94)90017-5
  12. B. He, J. J. Tan, K. Y. Liew, and H. Liu, J. Mol Catal. A Chem., 221, 121 (2004) https://doi.org/10.1016/j.molcata.2004.06.025
  13. Z.-J. Jiang, C.-Y. Liu, and Y. Liu, Appl. Sur. Sci., 233, 135 (2004)
  14. J.- Y. Lee, J.-H. An, and J.-H. Kim, J. Korean Ind. Chem., 16, 169 (2005)
  15. J. L. Katz and P. F. Moquel, Nanostructured Mater., 4, 551 (1994) https://doi.org/10.1016/0965-9773(94)90063-9
  16. M. K. Akhtar, S. Vemury, and S. E. Pratsinis, Nanostructured Mater., 2, 29 (1993)
  17. P. S. Patil, Mater. Chem. Phys., 59, 185 (1999) https://doi.org/10.1016/S0254-0584(99)00049-8
  18. W.-N. Wang, Y. Itoh, I. W. Lenggoro, and K. Okuyana, Mater. Sci. Eng. B, 111, 69 (2004) https://doi.org/10.1016/j.mseb.2004.03.024
  19. S.-M. Oh and D.-W. Park, Kor. J. Chem. Eng., 17,299 (2000)
  20. P. Madhu Kumar, P. Borse, V. K. Rohatgi, S. V. Bhoraskar, P. Singh, and M. Sastry, Mater. Chem. Phys., 36, 354 (1994) https://doi.org/10.1016/0254-0584(94)90054-X
  21. S.-M. Oh and D.-W. Park, Thin Solid Films, 316, 189 (1998) https://doi.org/10.1016/S0040-6090(98)00413-1
  22. S. Nakamura and N. Ichinose, J. Ceram. Soc. Jpn. Int. Ed., 96, 591 (1988)
  23. S.-M. Oh, J.-G. Gong, and D.-W. Park, J. Chem. Eng. Jap., 34, 283 (2001)
  24. E. Borsella, S. Botti, R. Giori, S. Martelli, T. Turtu, and G. zappa, Appl. Phys. Lett., 63, 1345 (1993) https://doi.org/10.1063/1.109672
  25. J. Y. Ying, J. B. Benrnzinger, and H. Gletier, Phys. Rev. B, 48, 1830 (1993) https://doi.org/10.1103/PhysRevB.48.1830
  26. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. S. Marra, J. Am. Ceram. Soc., 65, 324 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10464.x
  27. J. A. Eastman, L. J. Thompson, and D. J. Marshall, Nanostructured Mater., 2, 304 (1993)
  28. T. B. Reed, J. Appl. Phys., 32, 821 (1961) https://doi.org/10.1063/1.1736112
  29. S.-M. Oh and D.-W. Park, HWAHAK KONGWHAK, 35, 249 (1997)
  30. S.-M. Oh, S.-S. Kim, J. E. Lee, T. Ishigaki, and D.-W. Park, Thin Solid Films, 435, 252 (2003) https://doi.org/10.1016/S0040-6090(03)00388-2
  31. S.-M. Oh and D.-W. Park, Thin Solid Films, 316, 189 (1998) https://doi.org/10.1016/S0040-6090(98)00413-1
  32. S.-M. Oh and T. Ishigaki, Thin Solid Films, 457, 186 (2004) https://doi.org/10.1016/j.tsf.2003.12.043
  33. S.-M. Oh, J.-G. Li, and T. Ishigaki, J. Mater. Res., 20, 529 (2005) https://doi.org/10.1557/JMR.2005.0070