• Title/Summary/Keyword: Quasi-linear

Search Result 343, Processing Time 0.045 seconds

Simulation and Quasi-linear Theory of Magnetospheric Bernstein Mode Instability

  • Lee, Junggi;Yoon, Peter H.;Hwang, Junga;Choe, Gwang Son
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2019
  • Multiple-harmonic electron cyclotron emissions, often known in the literature as the (n + 1∕2)fce emissions, are a common occurrence in the magnetosphere. These emissions are often interpreted in terms of the Bernstein mode instability driven by the electron loss cone velocity distribution function. Alternatively, they can be interpreted as quasi-thermal emission of electrostatic fluctuations in magnetized plasmas. The present paper carries out a one-dimensional relativistic electromagnetic particle-in-cell simulation and also employs a reduced quasi-linear kinetic theoretical analysis in order to compare against the simulation. It is found that the Bernstein mode instability is indeed excited by the loss cone distribution of electrons, but the saturation level of the electrostatic mode is quite low, and that the effects of instability on the electrons is rather minimal. This supports the interpretation of multiple-harmonic emission in the context of the spontaneous emission and reabsorption in quasi-thermal magnetized plasma in the magnetosphere.

  • PDF

Optimal Directivity Synthesis of Linear array Sources (선형배열음원의 최적 지향성합성)

  • Jeong, Eui-Cheol;Kim, Sang-Yun;Kim, On;Cho, Ki-Ryang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.250-259
    • /
    • 2012
  • This paper compared and investigated the choice of optimal algorithm affects on the directivity synthesis of linear array in the satisfaction to the design specification of the desired directivity, convergence characteristic, and adaptability. Optimal algorithms use a quasi-Newton method(DFP and BFGS method) for realizing the desired directivity, used a quasi-ideal beam, steering beam, and a multi-beam, chosen as desired directivity. In the numerical result, this paper verified the effectiveness of the quasi-Newton method to the directivity synthesis, and offered a solving approach of occurred problems in the numerical simulation process.

NEWTON AND QUASI-NEWTON METHODS FOR EQUATIONS OF SMOOTH COMPOSITIONS OF SEMISMOOTH FUNCTIONS

  • Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.747-756
    • /
    • 1999
  • The Newtom method and the quasi-Newton method for solving equations of smooth compositions of semismooth functions are proposed. The Q-superlinear convergence of the Newton method and the Q-linear convergence of the quasi-Newton method are proved. The present methods can be more easily implemeted than previous ones for this class of nonsmooth equations.

Identification of Multiple Outlying Cells in Multi-way Tables

  • Lee, Jong Cheol;Hong, Chong Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.687-698
    • /
    • 2000
  • An identification method is proposed in order to detect more than one outlying cells in multi-way contingency tables. The iterative proportional fitting method is applied to get expected values of several suspected outlying cells. Since the proposed method uses minimal sufficient statistics under quasi log-linear models, expected counts of outlying cells could be estimated under any hierarchical log-linear models. This method is an extension of the backwards-stepping method of Simonoff(1988) and requires les iteration to identify outlying cells.

  • PDF

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

UTLIZIATION OF RADARSAT FOR FORECASTING OIL SLICKT RAJECTORY MOVEMENT

  • Marghany, Maged
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.435-437
    • /
    • 2003
  • This study presents work to utilize RADARSAT SAR image for forecast oil slick trajectory movement. The fractal dimension algorithm used to detect oil slick. The Doppler frequency shift and quasi-linear model was used to simulate a current pattern from RADARSAT image. The Fay’s algorithm of oil slick spreading was developed based on a Doppler frequency shift model. Thus, the study shows that fractal dimension algorithm discriminated the oil slick from the surrounding water features. The quasi-linear model shows that the current pattern can be simulated from single RADARSAT image. The oil slick trajectory model shows that after 48 hrs, the oil slick parcels deposited along the coastal waters.

  • PDF

MAXIMAL DOMAINS OF SOLUTIONS FOR ANALYTIC QUASILINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER

  • Han, Chong-Kyu;Kim, Taejung
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1171-1184
    • /
    • 2022
  • We study the real-analytic continuation of local real-analytic solutions to the Cauchy problems of quasi-linear partial differential equations of first order for a scalar function. By making use of the first integrals of the characteristic vector field and the implicit function theorem we determine the maximal domain of the analytic extension of a local solution as a single-valued function. We present some examples including the scalar conservation laws that admit global first integrals so that our method is applicable.