• Title/Summary/Keyword: Quasi-Three-Dimensional Method

Search Result 89, Processing Time 0.024 seconds

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(3) -Construction of the Formulation for True Newton Method and Application to Viscous Drag Reduction of Three-Dimensional Flow (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(3) - 트루 뉴턴법을 위한 정식화 개발 및 유체의 3차원 최적 엑티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • We have developed several methods for the optimization problem having large-scale and highly nonlinear system. First, step by step method in optimization process was employed to improve the convergence. In addition, techniques of furnishing good initial guesses for analysis using sensitivity information acquired from optimization iteration, and of manipulating analysis/optimization convergency criterion motivated from simultaneous technique were used. We applied them to flow control problem and verified their efficiency and robustness. However, they are based on quasi-Newton method that approximate the Hessian matrix using exact first derivatives. However solution of the Navier-Stokes equations are very cost, so we want to improve the efficiency of the optimization algorithm as much as possible. Thus we develop a true Newton method that uses exact Hessian matrix. And we apply that to the three-dimensional problem of flow around a sphere. This problem is certainly intractable with existing methods for optimal flow control. However, we can attack such problems with the methods that we developed previously and true Newton method.

Three Dimensional Interlaminar Stress Analysis of a Composite Patch Using Stress Functions (응력함수를 이용한 복합재 적층 패치의 3차원 층간 응력 해석)

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Heung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.488-491
    • /
    • 2009
  • 본 논문에서는 응력함수와 Kantorovich method를 이용하여 기저판(substrate)에 인장과 굽힘이 작용할 때 복합재 패치의 3차원 응력을 해석하였다. 면내 방향과 면외 방향의 두 응력함수에 가상 공액일의 법칙(Complementary virtual work principle)을 적용하였으며 복합재 패치의 자유 경계조건과 바닥의 기저판으로부터 전달되는 전단 수직 응력 조건을 부여하였다. 이를 통해서 패치 구조물의 지배방정식을 연립 미분 방정식 형태의 고유치 문제로 변환하여 응력함수를 구하였다. 위 방법의 타당성과 효용성을 검증하기 위한 수치 예제로 cross-ply, angle-ply, quasi-isotropic의 패치 적층 배열을 고려하였으며, 층간 응력함수 값이 자유 경계에서 최고치를 나타내고 패치 중심부로 갈수록 급격히 감소하는 모습을 확인하였다. 제안된 기법은 기저판에 인장하중이 작용하는 경우뿐만 아니라 굽힘 하중이 작용하는 경우에도 정확한 예측이 가능하여, 패치 구조물의 층간 응력을 포함한 3차원 응력을 해석하는데 있어서 효율적인 해석 도구로서 사용할 수 있을 것이라 사료된다.

  • PDF

Aerodynamic Analysis and Design of Inline-Duct Fan (관류익형송풍기의 공력해석 및 설계)

  • Guo En-Min;Kim Kwang-Yong;Seo Seoung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF

Non-Linear Ekman Pumping Model (비선형 에크만 분출 모델)

  • Park, Jae-Hyoun;Kim, Jung-Hwan;Kim, Dong-Kyun;Bae, Suk-Tae;Kim, Jung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.305-306
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict tile rotating flows more precisely than the classical linear model.

  • PDF

Development of a Nonlinear Ekman Pumping Model (비선형 Ekman 펌핑 모델의 개발)

  • Suh Yong-Kweon;Park Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.568-577
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict the rotating flows more precisely than the classical linear model.

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Interlaminar Stress Analysis of the Mechanical Joint of the Composite Materials (복합적층판 기계적 체결부에 대한 층간응력해석)

  • 안용택;송관형
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.49-57
    • /
    • 2003
  • This method surely needs a hole that causes local strength and stiffness deterioration of the structure because of stress intensity. In this work, three dimensional stress analysis of pin-loaded joint for quasi-isotropic composite laminates was performed using commercial finite element software. Stress distribution was calculated near the edge of the pin-leaded hole and effects of the stacking sequence on the delamination were investigated. Also, the delamination strength of the composite laminates was predicted using the Ye-delamination failure criterion and compared with the experimental results. finally, newly modified failure criterion has been suggested owing to the consideration of effects of interlaminar normal stress on the delamination strength.

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory

  • Zenkour, Ashraf M.;Hafed, Zahra S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.