Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.5.685

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm  

Luo, Weili (School of Civil Engineering, Guangzhou University)
Wang, Hui (School of Civil Engineering, Guangzhou University)
Li, Yadong (School of Civil Engineering, Guangzhou University)
Liang, Xing (School of Civil Engineering, Guangzhou University)
Zheng, Tongyi (School of Civil Engineering, Guangzhou University)
Publication Information
Steel and Composite Structures / v.42, no.5, 2022 , pp. 685-697 More about this Journal
Abstract
In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.
Keywords
delamination detection; experience-based learning algorithm; finite element modeling; laminated composite structure;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hou, R., Xia, Y., Xia, Q. and Zhou, X. (2019), "Genetic algorithm based optimal sensor placement for l1-regularized damage detection", Struct. Control Health Monit., 26(1). https://doi.org/10.1002/stc.2274   DOI
2 Attari, B. and Tavakkolizadeh, M. (2019), "An experimental investigation on effect of elevated temperatures on bond strength between externally bonded cfrp and concrete", Steel Compos. Struct., 32(5), 559-569. https://doi.org/10.12989/scs.2019.32.5.559.   DOI
3 Cao, M., Radzieriski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Sig. Processing, 46(2), 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004.   DOI
4 Cao, M., Su, Z., Xu, H., Maciej Radzienski, and Ostachowicz, W. (2020), "A novel damage characterization approach for laminated composites in the absence of material and structural information", Mech. Syst. Sig. Processing, 143, 106831. https://doi.org/10.1016/j.ymssp.2020.106831.   DOI
5 Ihesiulor, O.K., Shankar, K., Zhang, Z. and Ray, T. (2014), "Validation of algorithms for delamination detection in composite structures using experimental data", J. Compos. Mater., 48(8), 969-983. https://doi.org/10.1177/0021998313480414.   DOI
6 Jain, M., Singh, V. and Rani, A. (2018), "A novel nature-inspired algorithm for optimization: Squirrel search algorithm", Swarm Evolution. Comput., 44, 148-175. https://doi.org/10.1016/j.swevo.2018.02.013.   DOI
7 Harrison, C. and Butler, R. (2001), "Locating delaminations in composite beams using gradient techniques and a genetic algorithm", AIAA J., 39(7), 1383-1389. https://doi.org/10.2514/2.1457.   DOI
8 Solodov, I. and Kreutzbruck, M. (2020), "Ultrasonic frequency mixing via local defect resonance for defect imaging in composites", Ultrasonics, 108, 106221. https://doi.org/10.1016/j.ultras.2020.106221.   DOI
9 Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419.   DOI
10 Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civil Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222).   DOI
11 Hou, R., Xia, Y. and Zhou, X. (2017), "Structural damage detection based on l1 regularization using natural frequencies and mode shapes", Struct. Control Health Monit., 25(3), 1-17. https://doi.org/10.1002/stc.2107.   DOI
12 Sha, G., Radzienski, M., Soman, R., Cao, M., Ostachowicz, W., and Xu, W. (2020), "Multiple damage detection in laminated composite beams by data fusion of Teager energy operator-wavelet transform mode shapes", Compos. Struct., 235, 111798. https://doi.org/10.1016/j.compstruct.2019.111798.   DOI
13 Ding, Z., Li, J. and Lu, Z.R. (2020), "A modified artificial bee colony algorithm for structural damage identification under varying temperature based on a novel objective function", Appl. Mathem. Modelling, 88, 122-141. https://doi.org/10.1016/j.apm.2020.06.039.   DOI
14 Ghasemi-Ghalebahman, A., Ashory, M.R. and Kokabi, M.J. (2017), "A proper lifting scheme wavelet transform for vibration-based damage identification in composite laminates", J. Thermoplastic Compos. Mater., 31(5), 668-688. https://doi.org/10.1177/0892705717718239.   DOI
15 Barman, S. K., Jebieshia, T.R., Tiwari, P., Maiti, D.K. and Maity, D. (2019), "Two-stage inverse method to detect delamination in composite beam using vibration responses", AIAA J., 57(3), 1312-1322. https://doi.org/10.2514/1.J057471.   DOI
16 Gomes, G.F. and Giovani, R.S. (2020), "An efficient two-step damage identification method using sunflower optimization algorithm and mode shape curvature (msdbi-sfo)", Eng. Comput.,1-20. https://doi.org/10.1007/s00366-020-01128-2.   DOI
17 Perez, M.A., Pernas-Sanchez, J., Artero-Guerrero, J.A. and Serra-Lopez, R. (2021), "High-velocity ice impact damage quantification in composite laminates using a frequency domain-based correlation approach", Mech. Syst. Sig. Processing, 147, 107124. https://doi.org/10.1016/j.ymssp.2020.107124.   DOI
18 Herman, A.P., Orifici, A.C. and Mouritz, A.P. (2013), "Vibration modal analysis of defects in composite t-stiffened panels", Compos. Struct., 104, 34-42. https://doi.org/10.1016/j.compstruct.2013.04.012.   DOI
19 Hu, H. and Wu, C. (2008), "Development of scanning damage index for the damage detection of plate structures using modal strain energy method", Mech. Syst. Sig. Processing, 23(2), 274-287. https://doi.org/10.1016/j.ymssp.2008.05.001.   DOI
20 Kang, F., Li, J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.   DOI
21 Oliver, G.A., Ancelotti, A.C. and Gomes, G.F. (2021), "Neural network-based damage identification in composite laminated plates using frequency shifts", Neural Comput. Appl., 33(8), 3183-3194. https://doi.org/10.1007/s00521-020-05180-3.   DOI
22 Sundarraja, M.C. and Prabhu, G.G. (2013), "Flexural behaviour of cfst members strengthened using cfrp composites", Steel Compos. Struct., 15(6), 623-643. https://doi.org/10.12989/scs.2013.15.6.623.   DOI
23 Xu, W., Fang, H., Cao, M., Zhou, L., Wang, Q. and Ostachowicz, W. (2019), "A noise-robust damage indicator for characterizing singularity of mode shapes for incipient delamination identification in cfrp laminates", Mech. Syst. Sig. Processing, 121(APR.15), 183-200. https://doi.org/10.1016/j.ymssp.2018.10.025.   DOI
24 Mei, H., Migot, A., Haider, M.F., Joseph, R., Bhuiyan, M.Y. and Giurgiutiu, V. (2019), "Vibration-based in-situ detection and quantification of delamination in composite plates", Sensors, 19(7), 1734. https://doi.org/10.3390/s19071734.   DOI
25 Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib. Digest, 38(4), 295-324. https://doi.org/10.1177/0583102406065898.   DOI
26 Moskovchenko, A.I., Vavilov, V.P., Bernegger, R., Maierhofer, C., and Chulkov, A.O. (2020), "Detecting delaminations in semitransparent glass fiber composite by using pulsed infrared thermography", J. Nondestruct. Evaluation, 39(3), 1-10. https://doi.org/10.1007/s10921-020-00717-x.   DOI
27 Pan, J., Zhang, Z., Wu, J., Ramakrishnan, K.R. and Singh, H.K. (2018), "A novel method of vibration modes selection for improving accuracy of frequency-based damage detection", Compos. Part B Eng., 159(FEB.15), 437-446. https://doi.org/10.1016/j.compositesb.2018.08.134.   DOI
28 Liu, S., Liu, F., Yang, Y., Li, L. and Li, Z. (2020), "Nondestructive evaluation 4.0: Ultrasonic intelligent nondestructive testing and evaluation for composites", Res. Nondestruct. Evaluation, 1-19. https://doi.org/10.1080/09349847.2020.1826613.   DOI
29 Zhang, H., Cao, Q., Gao, H., Wang, P., Zhang, W. and Yousefi, N. (2020), "Optimum design of a multi-form energy hub by applying particle swarm optimization", J. Cleaner Production, 260, 121079. https://doi.org/10.1016/j.jclepro.2020.121079.   DOI
30 Zhang, Z., Pan, J., Luo, W., Ramakrishnan, K.R. and Singh, H.K. (2019), "Vibration-based delamination detection in curved composite plates", Compos. Part A: Appl. Sci. Manufact., 119, 261-274. https://doi.org/10.1016/j.compositesa.2019.02.002.   DOI
31 Shoukroun, D., Massimi, L., Iacoviello, F., Endrizzi, M., Bate, D., Olivo, A. and Fromme, P. (2020), "Enhanced composite plate impact damage detection and characterisation using X-Ray refraction and scattering contrast combined with ultrasonic imaging", Compos. Part B: Eng., 181, 107579. https://doi.org/10.1016/j.compositesb.2019.107579.   DOI
32 Parhi, A., Singh, B.N. and Panda, S.K. (2020), "Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment", Eng. Comput., 36(4), 1201-1214. https://doi.org/10.1007/s00366-019-00903-0.   DOI
33 Park, J.W. and Yoo, J.H. (2015), "Flexural and compression behavior for steel structures strengthened with carbon fiber reinforced polymers (cfrps) sheet", Steel Compos. Struct., 19(2), 441-465. https://doi.org/10.12989/scs.2015.19.2.441.   DOI
34 Qiao, P., Lestari, W., Shah, M.G. and Wang, J. (2007), "Dynamics-based damage detection of composite laminated beams using contact and noncontact measurement systems", J. Compos. Mater., 41(10), 1217-1252. https://doi.org/10.1177/0021998306067306.   DOI
35 Zheng, T., Liu, J., Luo, W. and Lu, Z. (2018), "Structural damage identification using cloud model based fruit fly optimization algorithm", Struct. Eng. Mech., 67(3), 245-254. https://doi.org/10.12989/sem.2018.67.3.245.   DOI
36 Zheng, T., Luo, W., Hou, R., Lu, Z. and Cui, J. (2020), "A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification", Eng. Optimization, 52(10), 1658-1681. https://doi.org/10.1080/0305215X.2019.1668935.   DOI