• Title/Summary/Keyword: Quasi 2-D Prediction

Search Result 13, Processing Time 0.018 seconds

Flow Field Analysis on the Stagnation Streamline of a Blunt Body

  • Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. The governing equations are solved using the implicit finite volume method. The computational domain is confined from the stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat flux at the stagnation point in the hypersonic blunt body flow.

Numerical Prediction of NOx in the Nonpremixed Hydrogen-Air Flame using the Quasi-Laminar Reaction Modelling (준충류 근사를 이용한 수소-공기 비예혼합화염의 질소산화물 생성예측)

  • Kim, Seong-Lyong;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • A Numerical Analysis of NOx production in Hydrogen-Air flame is performed using the quasi-laminar reaction modelling. As results, in low global strain rate region, $U_F/D_F\;{\leq}\;50,000$, the quasi-laminar reaction modelling reproduces the experimentally observed EINOx half power scaling that the ratio of EINOx and flame residence time, $L_f^3(D_F^2U_F)$, is proportional to the square root of global strain rate. Thus, it suggests that turbulence-chemistry interaction has a minor impact on the trend of NOx production in low global strain rate region. However, the quasi-laminar reaction modelling predicts the higher temperature and NOx than experimentally observed. This overprediction may be due to the lack of radiation and quasi-laminar reaction modelling.

  • PDF

A Study on the Analysis for Aerodynamic design of centrifugal Compressor of the Marine Turbocharger (박용 터보챠저 원심압축기의 공력설계에 대한 해석적 연구)

  • Oh, Kook-Taek;Kim, Hong-Won;Ghal, Sang-Hak;Ha, Ji-Soo;Ryu, Seung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.649-654
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for centrifugal compressor of the marine middle engine turbocharger. The performance characteristics of turbocharger compressor are investigated at various operating conditions using mass flow rate and revolution speed, and computational flow analysis for impeller and diffuser at design point are performed. Preliminary design results correspond to actual compressor geometric values comparatively by applying modified slip factor. Performance prediction and flow analysis results show good agreement with experiments. Therefore, this will provide the performance prediction in preliminary design, and help to increase the design capability for optimized impeller.

  • PDF

A Aerodynamic Design of Mixed Flow Turbine of the Marine Turbocharger (박용 터보챠저 사류 터빈의 공력설계)

  • Kim, Hong-Won;Oh, Kook-Taek;Ghal, Sang-Hak;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.670-675
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for turbine of the marine middle engine turbocharger. The performance characteristics of turbocharger turbine are investigated at various operating conditions using mass flow rate and computational flow analysis for rotor and nozzle at design point are performed. Preliminary design results are performed by applying mean line and radial equilibrium theory. Performance prediction and flow analysis results show good agreement with experiments. From 3 dimensional flow analysis result, efficiency is 0.6% greater than design point. Therefore, this design approach is useful for preliminary design, and helps to increase the design capability for optimized rotor blade.

  • PDF

Quasi-Lossless Fast Motion Estimation Algorithm using Distribution of Motion Vector and Adaptive Search Pattern and Matching Criterion (움직임벡터의 분포와 적응적인 탐색 패턴 및 매칭기준을 이용한 유사 무손실 고속 움직임 예측 알고리즘)

  • Park, Seong-Mo;Ryu, Tae-Kyung;Jung, Yong-Jae;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.991-999
    • /
    • 2010
  • In this paper, we propose a fast motion estimation algorithm for video encoding. Conventional fast motion estimation algorithms have a serious problem of low prediction quality in some frames. However, full search based fast algorithms have low computational reduction ratio. In the paper, we propose an algorithm that significantly reduces unnecessary computations, while keeping prediction quality almost similar to that of the full search. The proposed algorithm uses distribution probability of motion vectors and adaptive search patterns and block matching criteria. By taking different search patterns and error criteria of block matching according to distribution probability of motion vectors, we can reduces only unnecessary computations efficiently. Our algorithm takes only 20~30% in computational amount and has decreased prediction quality about 0~0.02dB compared with the fast full search of the H.264 reference software. Our algorithm will be useful to real-time video coding applications using MPEG-2 or MPEG-4 AVC standards.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Study on the Combustion Characteristics of Methanol Fuel Droplet (Methanol 연료 액적의 연소 특성에 관한 연구)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

A Fast Motion Estimation Algorithm using Probability Distribution of Motion Vector and Adaptive Search (움직임벡터의 확률분포와 적응적인 탐색을 이용한 고속 움직임 예측 알고리즘)

  • Park, Seong-Mo;Ryu, Tae-Kyung;Kim, Jong-Nam
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.2
    • /
    • pp.162-165
    • /
    • 2010
  • In the paper, we propose an algorithm that significantly reduces unnecessary computations, while keeping prediction quality almost similar to that of the full search. In the proposed algorithm, we can reduces only unnecessary computations efficiently by taking different search patterns and error criteria of block matching according to distribution probability of motion vectors. Our algorithm takes only 20~30% in computational amount and has decreased prediction quality about 0~0.02dB compared with the fast full search of the H.264 reference software. Our algorithm will be useful to real-time video coding applications using MPEG-2/4 AVC standards.

Failure Prediction for Composite Materials under Flexural Loading (굽힘 하중에 의한 복합재료 파손 예측 연구)

  • Kim, Jin-Sung;Roh, Jin-Ho;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1013-1020
    • /
    • 2017
  • In this study, the failure prediction of composite laminates under flexural loading is investigated. A FEA(finite element analysis) using 2D strain-based interactive failure theory. A pregressive failure analysis was applied to FEA for stiffness degradation with failure mode each layer. A three-point bending test based on the ASTM D790 are performed for cross-ply $[0/90]_8$ and quasi-isotropic $[0/{\pm}45/90]_{2s}$ laminated composites. The accuracy of the applied failure theory is verified with the experimental results and other failure criteria such as maximum strain, maximum stress and Tsai-Wu theories.