• Title/Summary/Keyword: Quarantine disease

Search Result 544, Processing Time 0.028 seconds

Lumpy skin disease outbreak and quarantine in the Incheon area

  • Dokyung Ra;Hyung-Seok Kim;Cheol Jeong;Dae sung Yoo;Ho-Seong Cho;Yeonsu Oh
    • Korean Journal of Veterinary Service
    • /
    • v.47 no.3
    • /
    • pp.179-183
    • /
    • 2024
  • In 2023, an outbreak of Lumpy Skin Disease in Ganghwa-gun, Incheon, South Korea, resulted in nine confirmed cases, comprising 8.4% of the national total, a disproportionately high percentage. Epidemiological investigations indicated a significant role of biting insects in viral transmission, particularly in the northern region. However, human-mediated transmission between farms under the same management was also identified. Clinical presentations in infected cattle varied, ranging from anorexia and skin nodules to severe systemic illness. Control measures included culling and burial of infected animals, a standstill order on susceptible livestock movement, and a mass vaccination campaign encompassing all 21,983 cattle in Incheon. Movement restrictions were gradually lifted following negative test results in designated surveillance, protection, and control zones. Environmental testing conducted 30 days after restriction removal allowed for restocking of previously affected farms. This outbreak highlights the vulnerability of the South Korean cattle industry to LSD and emphasizes the critical need for robust preventative measures, including enhanced vector control strategies and widespread vaccination.

Infection patterns of porcine reproductive and respiratory syndrome virus by serological analysis on a farm level (혈청학적 분석을 통한 돼지 생식기호흡기증후군의 농장단위 감염유형)

  • Park, Choi-Kyu;Yoon, Ha-Chung;Lee, Chang-Hee;Jung, Byeong-Yeal;Lee, Kyoung-Ki;Kim, Hyun-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Porcine reproductive and respiratory syndrome (PRRS) is the most economically important viral infectious disease in pig populations worldwide. This study was conducted to better understand the epidemic and dynamics of PRRS virus (PRRSV) on each farm and to evaluate the risk of PRRSV infection in Korea. Interviews with pig farmers were carried out to obtain PRRS vaccination programmes in 60 pig farms throughout Korea. Blood samples were also collected from the 59 pig farms to investigate outbreak patterns of each farm. Vaccination against PRRS was performed in 16.7% farms for breeding pigs and 8.3% of farms for nursery pigs. According to the seroepidemiological analysis, 56 (94.9%) out of 59 farms were considered to be affected by PRRSV infection. The results revealed that 68.9% of sows tested were seroconverted and interestingly, gilt herds had the highest seropositive rate (73%), suggesting that gilts may play a key role in PRRSV transmission in sow herds. Among the PRRS-affected piglet herds, 33 (55.9%), 14 (23.7%) and 6 (10.2%) farms were initially infected with PRRSV during the weaning, suckling and nursery period, respectively. It seems likely, therefore, that PRRSV infection predominantly occurs around the weaning period in piglet herds. Based on antibody seroprevalence levels in both sow and piglet groups, we were able to classify patterns of PRRSV infection per farm unit into 4 categories; category 1 (stable sow groups and non-infected piglet groups), category 2 (unstable sow groups and non-infected piglet groups), category 3 (stable sow groups and infected piglet groups), and category 4 (unstable sow groups and infected piglet groups). Our data suggested that 43 (72.9%) farms were analysed to belong to category 4, which is considered to be at high-risk for PRRS outbreak. Taken together, our information from this study will provide insight into the establishment of an effective control strategy for PRRS on the field.

Identification of Daphne Mottle Virus Isolated from Daphne odora, a New Member of the Genus Potyvirus (서향에서 분리한 신종 포티바이러스(Daphne Mottle Virus)의 동정)

  • Park, Chung Youl;Park, Jungan;Lee, Boo-Ja;Bak, Sangmin;Lee, Hong-Kyu;Kim, Jeong-Sun;Yoon, Youngnam;Suh, Sang Jae;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • A new poty-like virus was isolated from plants of winter daphne (Daphne odora) that showed virus-like symptoms on leaves, from four regions of Korea during 2014. Filamentous-shaped particles were observed by transmission electron microscopy of preparations extracted from symptomatic leaves and examined by the direct negative stain method. RT-PCR assay showed that three samples were positive for both Cucumber mosaic virus and potyvirus, and only one sample was positive for potyvirus only. A BLAST comparison to partial sequences from helper-component proteinase, cylindrical inclusion and coat protein genes detected the highest nucleotide identity of 76%, 72%, and 72% with Daphne mosaic virus, respectively, levels below the potyvirus species discrimination threshold. The new potyvirus was isolated using indicator plants (Chenopodium amaranticolor), in which local lesions were produced. In this study, we identified a novel potyvirus from winter daphne, which we have named Daphne mottle virus (DapMoV).

Effect of Acetic and Lactic Acid Mixtures on Control of Quarantine Nematode, Bursaphelenchus xylophilus, in Exporting Cymbidium (초산과 젖산 혼합액에 의한 수출용 심비디움 검역선충 Bursaphelenchus xylophilus의 방제 효과)

  • Seo, Yunhee;Park, Jiyeong;Cho, Myoung Rae;Chun, Jae Yong;Kim, Young Ho
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • The mixture (MX) of acetic acid (AA) and lactic acid (LA) was examined for its effectiveness in the control of the pine wood nematode Bursaphelenchus xylophilus contaminated in cymbidium culture medium. Nematode mortality in vitro was nearly 100% in AA and MX at the concentrations of 5.0-1.0% (pH 2.6 - 4.2) and in LA only at 5.0% (pH 3.5), but lowered at concentrations of 0.5-0.1% (pH 5.1-6.9) more significantly in LA than AA and MX. MX of most concentrations caused higher nematode mortality than the average response to AA and LA. All treatments of MX (0.5% and 0.25%), fosthiazate (standard and double concentrations) and culture dilution of Paenibacillus polymyxa GBR-1 ($10^7$colony-forming units/ml) reduced significantly the nematode populations in the cymbidium culture medium, compared to non-treatment control, with no significant difference among the treatments. No phytotoxicity occurred in all treatments. pH of the medium with the time after treatment and growths of 2-year-old cymbidium were not significantly different among treatments. Considering the safety and price of the organic acids, use of MX in the processes for culturing cymbidium may be a practically reliable and eco-friendly way in the control of the quarantine nematode in cymbidium.

Development of PCR Primers to Detect Pseudomonas savastanoi pv. phaseolicola from the Bean Seeds (강낭콩 종자에서 Pseudomonas savastanoi pv. phaseolicola의 검출을 위한 PCR 프라이머의 개발)

  • Cho, Jung-Hee;Jeong, Min-Jung;Song, Min-Ji;Yim, Kyu-Ock;Lee, Hyok-In;Kim, Jung-Hee;Baeg, Ji-Hyun;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • PCR primers were developed to detect Pseudomonas savastanoi pv. phaseolicola, a causal agent of halo blight that occurs in all species of common bean (Phaseolus vulgaris L.), from the bean seeds. A primer set, Psp-JHF and Psp-JH-R, specifically amplified 513 bp fragment from Pseudomonas savastanoi pv. phaseolicola only. A nested primer set, psp-JH-F-ne and psp-JH-R-ne, designed from the $1^{st}$ PCR amplicon, amplified 169 bp fragment. The primer sets did not amplify any non-specific DNA from the seed extracts of Fabaceae including 4 beans, 2 soybeans, and 2 peas. The detection sensitivity of the nested PCR method developed in this study was much higher than that of ELISA and selective medium. PCR assays developed in this study should be useful to detect Pseudomonas savastanoi pv. phasolicola from the bean seeds.

Introduction of List of Plant Diseases in Korea 6.1st Edition (2023 Revised Version) (한국식물병명목록 6.1판(2023 개정본))

  • Seon-Hee Kim;Jaehyuk Choi;Young-Joon Choi;Byeong-Yong Park;Su-Heon Lee;Gyoung Hee Kim;Hyun Gi Kong;Donggun Kim;Soonok Kim;Youngho Kim;Chang-Gi Back;Hee-Seong Byun;Jang Kyun Seo;Jun Myoung Yu;Ju-Yeon Yoon;Dong-Hyeon Lee;Seung-Yeol Lee;Seungmo Lim;Yongho Jeon;Jaeyong Chun;Insoo Choi;In-Young Choi;Hyo-Won Choi;Jin Sung Hong;Seung-Beom Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.331-344
    • /
    • 2023
  • More than a year has passed after the 6th edition of 'List of Plant Diseases in Korea (LPDK)' was published in April 2022. The 6.1st edition (2023) of List of Plant Diseases in Korea was made by correcting errors found in the 6th edition of list and adding new diseases reported after the 6th edition. There were 397 corrections from the 6th edition, most of which were simple spelling errors or minor issues. However, 12 diseases were deleted due to duplication or unclear literature proof, and 2 diseases had their diseases' common names changed. We added 158 diseases that were reported before 2021 but not included in the 6th edition, or reported after the 6th edition. After all, 146 diseases were added to the 6,534 diseases in the 6th edition, resulting in a total of 6,680 diseases in the 6.1st edition. Thirty host taxa were also added, increasing the number from 1,390 in the 6th edition to 1,420 in the 6.1st edition. Pathogens were also added to 62 taxa, from 2,400 in the 6th edition, bringing the total to 2,462 taxa in the 6.1st edition. Ultimately, the 6.1st edition (2023) of 'The List of Plant Diseases in Korea' contains 6,680 diseases caused by pathogens of 2,462 taxa on 1,420 hosts. The 6.1st edition is not printed as a book, but is provided through the online 'List of Plant Diseases in Korea' (https://genebank. rda.go.kr/kplantdisease.do).

Investigation of Ingredients and Hazardous Substances in Disinfectants Used against COVID-19 and Some Livestock Diseases (코로나바이러스감염증-19와 일부 가축전염병 방역소독제품의 함유성분 및 유해물질 조사)

  • Kim, DongHyun;Lim, Miyoung;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.470-479
    • /
    • 2020
  • Objectives: The Coronavirus Disease 2019 (COVID-19) pandemic has caused the death of 740,000 people around the world as of August 12, 2020. Foot-and-Mouth Disease, Avian Influenza, and African Swine Fever are serious livestock diseases. Government agencies in Korea have provided ingredient information and usage instructions for disinfectants used to counter those infectious diseases. The purpose of this study was to provide information on the chemical ingredients in disinfectant products used against COVID-19 and certain livestock diseases. Methods: We collected information from the Korean government. The Central Disaster Management Headquarters and Central Disease Control Headquarters provided information on disinfectant products used against COVID-19. The Animal and Plant Quarantine Agency of Korea provided information on efficacy-certified disinfectant products for use against selected livestock diseases. Health hazard and environmental hazard information on the ingredients in the disinfectants was collected from the Korea Occupational Safety & Health Agency's Material Safety Data Sheets, and toxicity value information was collected from United States Environmental Protection Agency's CompTox Chemicals Dashboard. Results: There were 76 COVID-19 disinfectant products in use, and the most common ingredients were benzalkonium chloride (51%), alkylbenzyl dimethyl ammonium (30%), and ethanol (3%). There were 216 livestock disease disinfectant products comprised of 89 acidic, 88 oxidic, 30 aldehydic, three alkaline, and six other products. Among the 49 active ingredients used in the disinfectants that were investigated, health and environmental hazard information was provided for many of them, but only 20 chemicals had official toxicological information. Conclusion: Since the disinfectants included numerous chemicals, an understanding of their chemical characteristics could be critical to prevent unintended human or environmental exposure.

Prevalence of Toxoplasma gondii in Stray Cats of Gyeonggi-do, Korea

  • Kim, Hye-Youn;Kim, Yun-Ah;Kang, Seung-Won;Lee, Ho-Sa;Rhie, Ho-Gun;Ahn, Hye-Jin;Nam, Ho-Woo;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.199-201
    • /
    • 2008
  • Toxoplasma gondii is an obligate intracellular zoonotic protozoan with a worldwide distribution. It infects humans as well as a broad spectrum of vertebrate hosts. Cats and wild felidae play crucial roles in the epidemiology of toxoplasmosis. This study was performed to survey the prevalence of T. gondii infection among stray cats in the Gyeonggi-do, Republic of Korea. A total of 174 stray cat blood samples were collected from Gwacheon-si (n = 20), Bucheon-si (82), and Yangju-si (72). Positive sera for T. gondii were identified in 14 samples (8.1%) exclusively via the latex agglutination test, 28 (16.1%) via ELISA, and 23 (13.2%) via PCR analysis. The overall infection rate of female stray cats (29.2%) presented as higher than that of male cats (24.0%). This study suggests that T. gondii is widespread in the stray cat population of Gyeonggi-do, Korea. It is urgently needed to control urban stray cat population and to reduce the risk of zoonotic transmission of toxoplasmosis to other animal hosts and humans.

Trust-based Infectious Disease Management System Using the Public Blockchain (공개형 블록체인을 활용한 신뢰기반 감염병 관리 시스템)

  • Jang, Kyung-Bae;Park, Jae-Hoon;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.795-801
    • /
    • 2020
  • In the event of a fatal infectious disease in the country, it is very important that the government respond quickly and prevent the secondary infection of the people to prevent the subsequent spread of damage. However, in order to detect infectious diseases in existing medical institutions, and to reach the KCDCP(Korea Centers for Disease Control and Prevention) a total of four steps must be taken. In this paper, we simplifies the existing reporting process using the open blockchain. In addition, not only infectious disease related organizations share infectious disease information on the blockchain, but also grant access to the blockchain to ordinary citizens. By sharing information quickly and transparently revealing the process, we can add credibility to the response to the outbreak and official announcements. The public can also build efficient next-generation defense systems by checking information on the blockchain to prevent secondary infections.

FMDV 2C Protein of Foot-and-mouth Disease Virus Increases Expression of Pro-inflammatory Cytokine TNFα via Endoplasmic Reticulum Stress (구제역바이러스의 FMDV 2C 단백질은 소포체 스트레스를 통해서 염증 유도 사이토카인 TNFα의 발현을 증가시킴)

  • Kang, Hyo Rin;Seong, Mi So;Nah, Jin Ju;Ryoo, Soyoon;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.285-290
    • /
    • 2020
  • Foot-and-mouth disease virus (FMDV), a member of the genus Aphthovirus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. FMDV causes various clinical symptoms, including severe inflammation in infected tissue. Genome RNA of FMDV shows a positive single-strand chain approximately 8.3 kb long and encodes a single long open reading frame (ORF). The ORF is translated into structural and non-structural proteins by viral proteases. The FMDV 2C protein is one of the non-structural proteins encoded by FMDV and plays a critical role in FMD pathogenesis, including inflammation, apoptosis, and viral replication. In this study, we examined whether FMDV 2C induces intracellular expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). FMDV 2C expression in pig IBRS-2 cells increased mRNA and protein expression of TNFα at the transcriptional level via activation of TNFα promoter. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress reducer, decreased TNFα expression induced by FMDV 2C. Activating transcription factor 4 (ATF4), a transcription factor mediating ER stress response, induced transactivation of TNFα promoter and expression of mRNA and protein of TNFα. However, the dominant negative mutant of ATF4 did not induce FMDV 2C-mediated TNFα expression. The results indicate that FMDV 2C protein increases clinical inflammation via ATF4-mediated TNFα expression and is associated with ER stress induction.