• 제목/요약/키워드: Quantum-well

Search Result 674, Processing Time 0.023 seconds

Quantum Mechanical Study of van der Waals Complex. Ⅰ.The $H^2$ Dimer Using the DFT and the Multi-Coefficient G2/G3 Methods

  • 김창신;김상준;이용식;김용호
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권5호
    • /
    • pp.510-514
    • /
    • 2000
  • Molecular hydrogen dimer, ($H_2)_2$ is a weakly bound van der Waals complex. The configuration of two hydrogen molecules and the potential well structure of the dimer have been the subjects of various studies among chemists and astrophysicists. In this study, we used DFT, MCG2, and MCG3 methods to determine the structure and energy of the molecular hydrogen dimer. We compared the results with previously reported ab initio method results. The ab initio results were also recalculated for comparison. All optimized geometries obtained from the MP2 and DFT methods are T-shaped. The H-H bond lengths for the dimer are almost the same as those of monomer. The center-to-center distance depeds on the levels of theory and the size of the basis sets. The bond lengths of the $H_2$ molecule from the MCG2 and MCG3 methods are shown to be in excellent agreement with the experimental value. The geometry of optimized dimer is T-shaped, and the well depths for the dimerization potential are very small, being 23 $cm-^1$ and 27 $cm-^1$ at the MCG2 and MCG3 levels, respectively. In general the MP2 level of theory predicts stronger van der Waals than the DFT, and agrees better with the MCG2 and MCG3 theories.

Theoretical Studies of the Low-Lying Electronic States of Diazirine and 3,$3^{\prime} $-Dimenthyldiazirine

  • 한민수;조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권11호
    • /
    • pp.1281-1287
    • /
    • 1999
  • The low-lying electronic states of diazirine and 3,3'-dimethyldiazirine have been studied by high level ab initio quantum chemical methods. The equilibrium geometries of the ground state and the first excited singlet and triplet states have been optimized using the Hartree-Fock (HF) and complete active space SCF (CASSCF) methods, as well as using the Møller-Plesset second order perturbation (MP2) theory and the single configuration interaction (CIS) theory. It was found that the first excited singlet state is of 1 B1 symmetry resulting from the n- π* transition, while the first excited triplet state is of 3 B2 symmetry resulting from the π- π* transition. The harmonic vibrational frequencies have been calculated at the optimized geometry of each electronic state, and the scaled frequencies have been compared with the experimental frequencies available. The adiabatic and vertical transition energies from the ground electronic state to the low-lying electronic states have been estimated by means of multireference methods based on the CASSCF wavefunctions, i.e., the multiconfigurational quasidegenerate second order perturbation (MCQDPT2) theory and the CASSCF second-order configuration interaction (CASSCF-SOCI) theory. The vertical transition energies have also been calculated by the CIS method for comparison. The computed transition energies, particularly by MCQDPT2, agree well with the experimental observations, and the electronic structures of the molecules have been discussed, particularly in light of the controversy over the existence of the so-called second electronic state.

적외선 센서용 극저온 용기의 냉각특성에 관한 실험적 연구 (An Experimental Study on the Cooling Characteristics of an Infrared Detector Cryochamber)

  • 강병하;이정훈;김호영
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.889-894
    • /
    • 2004
  • Infrared (IR) detectors are widely used for many applications, such as temperature measurement, intruder and fire detection, robotics and industrial equipment, thermoelstic stress analysis, medical diagnostics, and chemical analysis. Quantum detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal analysis of cryochamber includes the conduction heat transfer through a cold well, the gases conduction and gas outgassing, as well as radiation heat transfer, The transient cooling characteristics of an infrared detector cryochamber are investigated experimentally in the present study. The transient cooling load increases as the gas pressure is increased. Gas pressure becomes significant as the cooling process proceeds. Cool down time is also increased as the gas pressure is increased. It is also found that natural convection effects on cool down time become significant when the gas pressure is increased.

SC20를 통해 본 HPC 기술 동향 (HPC Technology Through SC20)

  • 어익수;모희숙;박유미;한우종
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.133-144
    • /
    • 2021
  • High-performance computing (HPC) is the underpinning for many of today's most exciting new research areas, to name a few, from big science to new ways of fighting the disease, to artificial intelligence (AI), to big data analytics, to quantum computing. This report captures the summary of a 9-day program of presentations, keynotes, and workshops at the SC20 conference, one of the most prominent events on sharing ideas and results in HPC technology R&D. Because of the exceptional situation caused by COVID-19, the conference was held entirely online from 11/9 to 11/19 2020, and interestingly caught more attention on using HPC to make a breakthrough in the area of vaccine and cure for COVID-19. The program brought together 103 papers from 21 countries, along with 163 presentations in 24 workshop sessions. The event has covered several key areas in HPC technology, including new memory hierarchy and interconnects for different accelerators, evaluation of parallel programming models, as well as simulation and modeling in traditional science applications. Notably, there was increasing interest in AI and Big Data analytics as well. With this summary of the recent HPC trend readers may find useful information to guide the R&D directions for challenging new technologies and applications in the area of HPC.

실온 저항브리지를 이용한 전기저항 측정의 국가표준 기술 (National Measurement Standard of Electrical Resistance using a Room Temperature Resistance Bridge)

  • 유광민;박영태;강전홍;김한준;임국형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.669-672
    • /
    • 2002
  • Establishment of the Quantum Hall Resistance(QHR) Standard as national resistance standard using a room temperature DCC resistance bridge is described. A simple method are used to obtain the current dependence and error of 10: 1 ratio of the bridge instead of the method using a cryogenic resistance bridge. Measurement uncertainty of the system is estimated as $0.14{\times}10^{-6}$ and it is confirmed that the QHR standard is agreed well with the QHR of other NMIs using the cryogenic resistance bridge within the uncertainty, More improvement about performance of the QHR device and 10: 1 ratio accuracy is still under progress.

  • PDF

완전공핍 광 싸이리스터에서 입출력의 높은 아이솔레이션을 위한 수직 입사형 구조에 관한 연구 (Depleted Optical Thyristor using Vertical-Injection Structure for High Isolation Between Input and Output)

  • 최운경;김두근;문년태;김도균;최영완
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권1호
    • /
    • pp.30-34
    • /
    • 2005
  • This study shows the lasing characteristics of InGaAs/InGaAsP multiple-quantum-well waveguide-type depleted optical thyristor (DOT) using the vertical window. The measured switching voltage and current are 3.36 V and 10 ㎂, respectively. The lasing threshold current is 131 mA at 25 ℃. The output peak wavelength is 1570 nm at a bias current of 1.22 Ith and there is not input signal anymore in the output port. The vertical injection depleted optical thyristor - laser diode (VIDOT-LD) using the vertical-injection structure shows very good isolation between input and output signal.

Introduction to IEC Standardization for Superconducting Sensors and Detectors

  • Ohkubo, M.
    • Progress in Superconductivity
    • /
    • 제14권2호
    • /
    • pp.106-109
    • /
    • 2012
  • Superconducting sensors and detectors have been applied to many fields or beginning to enter the maturing stage. The applications spread over a wide range of fields such as radio telescope, medical examination, quantum information, contamination inspection, materials analysis, etc. For users of the superconducting devices as well as developers, we have to avoid confusion of naming, graphical circuit symbols, and measurement methods for device performance. We are trying to formulate international standards under the International Electrotechnical Commission - Technical Committee 90 (IEC-TC90), which is responsible for superconductivity. The sensors and detectors to be considered are divided into two groups: coherent sensors (SQUID, SIS mixers, etc.) and direct detectors (TES, STJ, MKID, SSPD, etc.).

Optical Phonons in AlGaAs/GaAs Multiple Quantum Well Structures

  • 김진흥;노희석;최원준;송진동;임준영;박성준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.289-289
    • /
    • 2012
  • Molecular beam epitaxy 방법으로 성장시킨 AlGaAs/GaAs 다중 양자 우물 구조에 대한 라만 산란 연구를 보고한다. InAs 양자점이 성장된 Si 기판 위에 각기 다른 온도에서 두께 약 1 ${\mu}m$의 GaAs 층을 두 단계로 성장시킨 후 그 위에 AlGaAs/GaAs 다중 양자 우물 구조를 성장시켰다. AlGaAs/GaAs 다중 양자 우물 구조의 광학적 특성에 영향을 주는 GaAs 층의 변형력(stress)의 변화를 알기 위해서 시료의 측면으로부터 공간 분해된 라만 산란 실험을 수행하였다. 라만 산란 실험으로부터 AlGaAs/GaAs 다중 양자 우물 구조가 지니는 모든 종류의 광학 포논을 관측하였으며, 두 단계로 성장시킨 GaAs 층에서의 변형력이 Si 기판으로부터 멀어질수록 성장조건의 변화에 따라서 다르게 전개된다는 것을 파악하였다.

  • PDF

Colloidal Synthesis of Octahedral Shaped PbSe Nanocrystals from Lead Oleate and Se : Temperature Effect

  • Gokarna, Anisha;Jun, Ki-Won;Khanna, P.K.;Baeg, Jin-Ook;Seok, Sang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1803-1806
    • /
    • 2005
  • Formation of octahedral shaped PbSe quantum dots at higher synthesis temperature is being reported in this paper. The synthesis includes the reaction between lead oleate and trioctylphosphine selenide under inert gas conditions to produce PbSe. TEM, SEM, XRD and EDS were used to characterize the samples. The SEM exhibited the formation of spherical shaped nanocrystals at temperature below 140 ${^{\circ}C}$ and octahedral shaped nanoparticles at higher temperatures. Moreover, the TEM also showed the well resolved (111) lattice fringes proving that the nanocrystals were crystalline in nature. Synthesis of highly pure PbSe nanocrystals was another interesting aspect of this research.

Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study

  • Jang, Sung-Woo;Park, Sung-Woo;Lee, Byoung-Se;Chi, Dae-Yoon;Song, Choong-Eui;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.881-884
    • /
    • 2012
  • We report a quantum chemical study of an extremely efficient nucleophilic aromatic fluorination in molten salts. We describe that the mechanism involves solvent anion interacting with the ion pair nucleophile $M^+F^-$(M = Na, K, Rb, Cs) to accelerate the reaction. We show that our proposed mechanism may well explain the excellent efficiency of molten salts for SNAr reactions, the relative efficacy of the metal cations, and also the observed large difference in rate constants in two molten salts $(n-C_4H_9)_4N^+\;CX_3SO_3^-$, (X=H, F) with slightly different sidechain ($-CH_3$ vs. $-CF_3$).