• Title/Summary/Keyword: Quantum-mechanical

Search Result 281, Processing Time 0.027 seconds

Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels (얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측)

  • Choi, Gil Sik;Chang, Soon Heung;Jeong, Yong Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.953-963
    • /
    • 2015
  • There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis

  • Almomani, Belal;Jang, Dongchan;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.411-425
    • /
    • 2017
  • Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose-risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

The ab Initio Quantum Mechanical Investigation for the Weakly Bound $H^+_{2n+1}$(n=1-6) Complexes (약한 결합을 갖는 $H^+_{2n+1}$(n=1-6) complex들에 대한 순 이론 양자역학적 연구)

  • In, Eun Jeong;Seo, Hyeon Il;Kim, Seung Jun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.401-412
    • /
    • 2001
  • The geometrical parameters, vibrational frequencies, and dissociation energies for $H_{2n+1}^+$ (n=1~6) clusters have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the single and double excitation configuration interaction (CISD), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest levels of theory employed in this study are TZ2P+d CCSD(T) up to $H^+_g$ and TZ2P CCSD(T) for $H_{11}^+$ and $H_{13}^+$. Harmonic vibrational frequencies are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. The dissociation energies, $D_e$, for $H_{2n+1}^+$ (n=26) have been predicted using energy differences at each optimized geometry and zero-point vibrational energies(ZPVEs) have been considered to compare with experimental dissociation energies, $D_0$.

  • PDF

Kinetic Studies of Nucleophilic Substitution Reaction of para-Substituted Benzoyl Compounds with Pyridines (파라치환 벤조일화합물과 피리딘의 친핵성치환반응에 대한 속도론적 연구)

  • Jeong Wha Kim;Tae Sup Uhm;Ik Choon Lee;In Sun Koo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.15-22
    • /
    • 1985
  • Kinetic studies of nucleophilic substitution reaction of substituted benzoyl cyanides and benzoyl chlorides with pyridines were conducted at 25$^{\circ}C$ in pure acetone solvent. Results showed that (ⅰ) magnitudes of $_{\rho}_S$, $_{\rho}_N$ and ${\beta}$ associated with a change of substituent in the nucleophile indicate relatively advanced bond-formation in the transition state, (ⅱ) the potential energy surface model is able to predict the reaction mechanism, but it is unable to predict the transition state variation to a more product-like transition state, where bond-formation is much more progressed than bond breaking, upon changing the leaving group to that with better leaving ability (ⅲ) the quantum mechanical model predicted the product-like transition state and slightly better leaving ability of CN- as compared with Cl-.

  • PDF

Dynamic Parameters Identification of an Air Spring for Vibration Isolation of a Complex Testing System of COG Bonding Process (COG 본딩공정 고속복합 검사 시스템의 방진용 에어 스프링의 동적 파라미터 규명 연구)

  • Lee, Ju-Hong;Kim, Pil-Kee;Seok, Jong-Won;Oh, Byung-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.13-20
    • /
    • 2010
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies, the precisionization and miniaturization of mechanical and electrical components are in high demand. The allowable margin for vibration limits for such equipments is becoming stricter. In order to meet this demand, understandings on the characteristics of vibration isolation systems are highly required. Among the components comprising the vibration isolation system, air spring has become a focal point. In order to develop a complex defect tester for COG bonding of display panels, a vibration isolation system composed of air springs for mounting is considered in this study. The dynamic characteristics of the air spring are investigated, which is the most essential ingredient for reducing the vibration problem of the tester to the lowest level. Uncoupled dynamic parameters of the air spring are identified through MTS experiments, followed by suggestion of a model-based approach to obtain the remaining coupled dynamic parameters. Finally, the dynamic behaviors of the air spring are estimated and discussed.

Nanopyramid Formation by Ag Metal-Assisted Chemical Etching for Nanotextured Si Solar Cells

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.206-211
    • /
    • 2015
  • We investigated the formation of a nanopyramidal structure and fabricated nanotextured Si solar cells using an Ag metal-assisted chemical etching process. The nanopyramidal structure was formed on a Si flat surface and the nanotexturing process was performed on the p-type microtextured Si surface. The nanostructural formation shows a transition from nanopits and nanopores to nanowires with etching time. The nanotextured surfaces also showed the photoluminescence spectra with an enhanced intensity in the wavelength range of 1,100~1,250 nm. The photoreflectance of the nanotextured Si solar cells was strongly reduced in the wavelength range of 337~596 nm. However, the quantum efficiency is decreased in the nanotextured samples due to the increased nanosurface recombination. The nanotexturing process provides a better p-n junction impedance of the nanotextured cells, resulting in an enhanced shunt resistance and fill factor which in turn renders the possibility of the increased conversion efficiency.

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.212-220
    • /
    • 2015
  • We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.

High Temperature Thermo-mechanical Properties of HfC Reinforced Tungsten Matrix Composites

  • Umer, Malik Adeel;Lee, Dong Ju;Ryu, Ho Jin;Hong, Soon Hyung
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.366-371
    • /
    • 2015
  • In order to improve the mechanical properties of tungsten at room and elevated temperature, hafnium carbide (HfC) reinforced tungsten matrix composites were prepared using the spark plasma sintering technique. The effect of HfC content on the compressive strength and flexural strength of the tungsten composites was investigated. Mechanical properties of the composites were also measured at elevated temperatures and their trends, with varying reinforcement volume fraction, were studied. The effect of reinforcement fraction on the thermal properties of the composites was investigated. The thermal conductivity and diffusivity of the composites decreased with increasing temperature and reinforcement volume fraction. An inherently low thermal conductivity of the reinforcement as well as interfacial losses was responsible for lower values of thermal conductivity of the composites. Values of coefficient of thermal expansion of the composites were observed to increase with HfC volume fraction.

A Study on the Geometric Design Parameters for Optimization of Cooling Device in the Magnetocardiogram System (심자도 장비의 냉각장치 특성 최적화를 위한 기하 설계 변수 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Lee, Yong-Ho;Lim, Hyun-Kyoon;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • A magnetocardiogram (MCG) is a recording of the biomagnetic signals generated by cardiac electrical activity. Biomagnetic instruments are based on superconducting quantum interference devices (SQUIDs). A liquid cryogenic Dewar flask was used to maintain the superconductors in a superconducting state at a very low temperature (4 K). In this study, the temperature distribution characteristics of the liquid helium in the Dewar flask was investigated. The Dewar flask used in this study has a 30 L liquid helium capacity with a hold time of 5 d. The Dewar flask has two thermal shields rated at 150 and 40 K. The temperatures measured at the end of the thermal shield and calculated from the computer model were compared. This study attempted to minimize the heat transfer rate of the cryogenic Dewar flask using an optimization method about the geometric variable to find the characteristics for the design geometric variables in terms of the stress distribution of the Dewar flask. For thermal and optimization analysis of the structure, the finite element method code ANSYS 10 was used. The computer model used for the cryogenic Dewar flask was useful to predict the temperature distribution for the area less affected by the thermal radiation.

Fabrication of Nano-photonic Crystals with Lattice Constant of 460-nm by Inductively-coupled Plasma Etching Process (유도결합형 플라즈마 식각공정을 통해 제작된 460 nm 격자를 갖는 나노 광결정 특성)

  • Choi, Jae-Ho;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.1-5
    • /
    • 2006
  • The GaN thin film on the 8 periods InGaN/GaN multi-quantum well structure was grown on the sapphire substrate using metal-organic chemical vapor deposition. The nano-scaled triangular-lattice holes with the diameter of 150 nm were patterned on a polymethylmethacrylate blocking film using an electron beam nano-lithography system. The thin slab and two-dimensional photonic crystals with the thickness of 28 nm were fabricated on the GaN layer for the blue light diffraction sources. The photonic crystal with the lattice parameter of 460 nm enhances spectral intensity of photoluminescence indicating that the photonic crystals provides the source of nano-diffraction for the blue light of the 450-nm wavelength.

  • PDF