• 제목/요약/키워드: Quantum-Dot

검색결과 429건 처리시간 0.026초

Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석 (Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation)

  • 김원갑;정재동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

미소유체 칩 상에서 Quantum Dot 및 마이크로 비드를 이용한 생체물질 분석 (Microbead-based bio-assay using quantum dot fluorescence in a microfluidic chip)

  • 윤광석;이도훈;김학성;윤의식
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.308-312
    • /
    • 2005
  • We present a microfluidic chip designed for the detection of antibody by using quantum dots fluorescence and a microbead-based assay. A custom designed PDMS microfluidic chip with multi-layer channel is utilized for capturing microbeads; antibody injection into each micro-well; QD injection; and fluorescence detection. The experiment using the fabricated microfluidic chip has been performed on solutions with various concentrations of antibody and has shown correlated fluorescent intensities.

나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지 (Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes)

  • 김재엽
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.45-48
    • /
    • 2019
  • Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.

Synthesis of Ultra-small PbS Nanocrystal Quantum Dots for Energy Applications

  • 최혜경;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.535-535
    • /
    • 2012
  • We present a new synthetic route and characterization for ultra small sized PbS quantum dots in extreme quantum confinement with 1.5 to 2.9 nm in diameter. We obtained a series of nanocrystals with first absorption wavelength ranging from 580 to 820 nm (2.1-1.5 eV). To get this result, PbS quantum dots size is finely controlled by adjusting the growth temperature in the range of $70-95^{\circ}C$. We demonstrate that photoluminescence (PL) shows a red shift with respect to the first absorption peak that increases with decreasing PbS quantum dots size and ranges from about 500 to 125 meV as the mean PbS quantum dots diameter increases from 1.5 to 2.9 nm. We further created the assembled PbS quantum dot solids and investigated the transport properties for energy applications.

  • PDF

All-optical Polarization Phase Modulation in Coupled Quantum Dots

  • Je, Ku Chul;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.60-64
    • /
    • 2017
  • We have considered optical nonlinearities of coupled quantum dots theoretically, where an exciton dipole-dipole interaction is mediated between the adjacent large and small quantum dots. For increasing a pump pulse area in resonance with the large quantum dot exciton the induced nonlinear refractive index of the small quantum dot exciton has been obtained. As the exciton dipole-dipole interaction depends on the relative orientation of two exciton dipoles, the optical nonlinearities for the directions parallel and perpendicular to the coupling axis of the two quantum dots are compared. The directional imbalance of optical nonlinearities in coupled quantum dots can be utilized for a polarization phase modulator by controlling a pump pulse area and propagation length.

CdSe Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Cells

  • Yum, Jun-Ho;Choi, Sang-Hyun;Kim, Seok-Soon;Kim, Dong-Yu;Sung, Yung-Eun
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.257-261
    • /
    • 2007
  • The electronic properties of quantum dots can be tuned by changing the size of particles without any change in their chemical composition. CdSe quantum dots, the sizes of which were controlled by changing the concentrations of Cd and Se precursors, were adsorbed on $TiO_2$ photoelectrodes and used as sensitizers for photovoltaic cells. For applications of CdSe quantum dot as sensitizers, $CdSe/TiO_2$ films on conducting glass were employed in a sandwich-type cell that incorporated a platinum-coated conductive glass and an electrolyte consisting of an $I^-/I_3^-$ redox. The fill factor (FF) and efficiency for energy conversion ($\c{c}$) of the photovoltaic cell was 62 % and 0.32 %, respectively.

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • 최근표;양영우;윤하진;임상규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

QCA 기반의 효율적인 PCA 구조 설계 (Design of PCA Architecture Based on Quantum-Dot Cellular Automata)

  • 신상호;이길제;유기영
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.178-184
    • /
    • 2014
  • PCA에 기반을 둔 CMOS 소자 기술은 메모리 혹은 ALU 회로의 구현에 매우 효율적이다. 그러나 CMOS 소자 스케일링 기술의 한계로 인하여 이를 해결할 수 있는 새로운 기술의 필요성이 대두되었고, 양자점 셀룰러 오토마타(QCA; quantum-dot cellular automata)는 이를 해결할 수 있는 기술로 등장했다. 본 논문에서는 QCA에 기반을 둔 효율적인 PCA 구조를 설계한다. 설계하는 PCA 구조에서의 D 플립플롭과 XOR 논리게이트는 기존에 제안되었던 회로를 사용하고, 입력 제어 스위치와 규칙 제어 스위치는 QCA에 기반을 두고 새롭게 설계한다. 설계된 PCA 구조는 QCA디자이너를 이용하여 시뮬레이션을 수행하고, 그 결과를 기존의 것과 비교 및 분석하여 설계된 구조의 효율성을 확인한다.

Quantum-dot Cellular Automata 회로로부터 디지털 논리 추출 (Digital Logic Extraction from Quantum-dot Cellular Automata Designs)

  • 오연보;이은철;김교선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.139-141
    • /
    • 2006
  • Quantum-dot Cellular Automata (QCA) is one of the most promising next generation nano-electronic devices which will inherit the throne of CMOS which is the domineering implementation technology of large scale low power digital systems. In late 1990s, the basic operations of the QCA cell were already demonstrated on a hardware implementation. Also, design tools and simulators were developed. Nevertheless, its design technology is not quite ready for ultra large scale designs. This paper proposes a new approach which enables the QCA designs to inherit the verification methodologies and tools of CMOS designs, as well. First, a set of disciplinary rules strictly restrict the cell arrangement not to deviate from the predefined structures but to guarantee the deterministic digital behaviors. After the gate and interconnect structures of the QCA design are identified, the signal integrity requirements including the input path balancing of majority gates, and the prevention of the noise amplification are checked. And then the digital logic is extracted and stored in the OpenAccess common engineering database which provides a connection to a large pool of CMOS design verification tools. Towards validating the proposed approach, we designed a 2-bit QCA adder. The digital logic is extracted, translated into the Verilog net list, and then simulated using a commercial software.

  • PDF