• 제목/요약/키워드: Quantum well

검색결과 674건 처리시간 0.027초

고각 환형 암시야 주사투과전자현미경기법과 투과전자현미경기법을 이용한 상용 청색 발광다이오드의 종합적인 구조분석 (Comprehensive Structural Characterization of Commercial Blue Light Emitting Diode by Using High-Angle Annular Dark Filed Scanning Transmission Electron Microscopy and Transmission Electron Microscopy)

  • 김동엽;홍순구;정태훈;이상헌;백종협
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2015
  • This study suggested comprehensive structural characterization methods for the commercial blue light emitting diodes(LEDs). By using the Z-contrast intensity profile of Cs-corrected high-angle annular dark field scanning transmission electron microscope(HAADF-STEM) images from a commercial lateral GaN-based blue light emitting diode, we obtained important structural information on the epilayer structure of the LED, which would have been difficult to obtain by conventional analysis. This method was simple but very powerful to obtain structural and chemical information on epi-structures in a nanometer-scale resolution. One of the examples was that we could determine whether the barrier in the multi-quantum well(MQW) was GaN or InGaN. Plan-view TEM observations were performed from the commercial blue LED to characterize the threading dislocations(TDs) and the related V-pit defects. Each TD observed in the region with the total LED epilayer structure including the MQW showed V-pit defects for almost of TDs independent of the TD types: edge-, screw-, mixed TDs. The total TD density from the region with the total LED epilayer structure including the MQW was about $3.6{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion as 80%: 7%: 13%. However, in the mesa-etched region without the MQW total TD density was about $2.5{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion of 86%: 5%: 9 %. The higher TD density in the total LED epilayer structure implied new generation of TDs mostly from the MQW region.

유기발광다이오드의 전기적 특성에 미치는 Teflon-AF의 영향 (Effect on the Electrical Characteristics of OLEDs Depending on Amorphous Fluoropolymer)

  • 심상민;한현석;강용길;김원종;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.750-754
    • /
    • 2011
  • In this research, the electric characteristic of organic light-emitting diodes(OLEDs) was studied depending on thickness of amorphous fluoropolymer(Teflon-AF) which is the material of hole injection layer to improve electric characteristic of OLEDs. Sample composition was fabricated in double layer. The basic structure was fabricated by ITO/tris(8-hydroxyquinoline) aluminum (Alq3)/Al and the 2 layer was fabricated by ITO/2,2-Bistrifluoromethyl-4,5-Difluoro-1,3-Dioxole(Teflon-AF)/tris(8-hydro xyquinoline) aluminum (Alq3)/Al. The experiment was carried with variation of thickness of Teflon-AF at 1.0, 2.0, 2.5, 3.0 nm. The result showed when Teflon-AF thickness was 2.5 nm, the electric and optical characteristic were well performed. Moreover, when it was compared with Teflon-AF without materials, it was improved 15.1 times more on luminance, 12.7 times more on luminous efficiency and 12.1 times more on external quantum efficiency. Therefore, OLEDs element with optimum hole injection layer reduced energy barrier and driving voltage, and confirmed that it improved efficiency widely.

Highly transparent Pt ohmic contact to InGaN / GaN blue light - emitting diodes

  • Huh, Chul;Kim, Hyun-Soo;Kim, Sang-Woo;Lee, Ji-Myon;Kim, Dong-Joon;Kim, Hyun-Min;Park, Seong-Ju
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권3호
    • /
    • pp.78-80
    • /
    • 2000
  • We reprot on the fabrication and characterization of InGaN/GaN multiple quantum well light-emitting diode (LED) with a highly transparent Pt ohmic contact as a current spreading layer. The value of light transmittance of a Pt thin film with a thickness of 8 nm on-GaN was measured to be 85% at 450 nm. The peak wavelength and the full-width at half-maximum (FWHM) of the emission spectrum of the LED at 20 mA were 453 nm and 23 nm, respectively. Pt-contacted LEDs show good electrical properties and high light-output efficiency compared to Ni/Au-contacted ones. These results suggest that a Pt thin film can be used as an effective current spreading layer with high light-transparency.

  • PDF

백색 LED증착용 MOCVD장치에서 유도가열을 이용한 기판의 온도 균일도 향상에 관한 연구

  • 홍광기;양원균;전영생;주정훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.463-463
    • /
    • 2010
  • 고휘도 고효율 백색 LED (lighting emitting diode)가 차세대 조명광원으로 급부상하고 있다. 백색 LED를 생산하기 위한 공정에서 MOCVD (유기금속화학증착)장비를 이용한 Epi wafer공정은 에피층과 기판의 격자상수 차이와 열팽창계수차이로 인하여 생성되는 에피결함의 제거를 위하여 기판과 GaN 박막층 사이에 완충작용을 해줄 수 있는 버퍼층 (Buffer layer)을 만들고 그 위에 InGaN/GaN MQW (Multi Quantum Well)공정을 하여 고휘도 고효율 백색 LED를 구현할 수 있다. 이 공정에서 기판의 온도가 불균일해지면 wafer 파장 균일도가 나빠지므로 백색 LED의 yield가 떨어진다. 균일한 기판 온도를 갖기 위한 조건으로 기판과 induction heater의 간격, 가스의 흐름, 기판의 회전, 유도가열코일의 디자인 등이 장비의 설계 요소이다. 코일에 교류전류를 흘려주면 이 코일 안 또는 근처에 있는 도전체에 와전류가 유도되어 가열되는 유도가열 방식은 가열 효율이 높아 경제적이고, 온도에 대한 신속한 응답성으로 인하여 열 손실을 줄일 수 있으며, 출력 온도 제어의 용이성 및 배출 가스 등의 오염 없다는 장점이 있다. 본 연구에서는 유도가열방식의 induction heater를 이용하여 회전에 의한 기판의 온도 균일도 측정을 하였다. 기초 실험으로 저항 가열 히터를 통하여 대류에 의한 온도 균일도를 평가하였다. 그 결과 gap이 3 mm일 때, 평균 온도 $166.5^{\circ}C$ 에서 불균일도 6.5 %를 얻었으며 이를 바탕으로 induction heater와 graphite susceptor의 간격이 3 mm일 때, 회전에 의한 온도 균일도를 측정을 하였다. 가열원은 induction heater (viewtong, VT-180C2)를 사용하였고, 가열된 graphite 표면의 온도를 2차원적으로 평가하기 위하여 적외선 열화상 카메라(Fluke, Ti-10)을 이용하여 온도를 측정하였다. 기판을 회전하면서 표면 온도의 평균과 표준 편차를 측정한 결과 2.5 RPM일 때 평균온도 $163^{\circ}C$ 에서 가장 좋은 5.5 %의 불균일도를 확인할 수 있었고, 이를 상용화 전산 유체 역학 코드인 CFD-ACE+의 모델링 결과와 비교 분석 하였다.

  • PDF

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

  • Kim, Sung-Bock;Bae, Sung-Bum;Ko, Young-Ho;Kim, Dong Churl;Nam, Eun-Soo
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.79-85
    • /
    • 2017
  • The crack-free AlGaN template has been successfully grown by using selective area growth with triangular GaN facet. The triangular GaN stripe structure was obtained by vertical growth rate enhanced mode with low growth temperature of $950^{\circ}C$ and high growth pressure of 500 torr. The lateral growth rate enhanced mode of AlGaN for crack-free and flat surface was also investigated. Low pressure of 30 torr and high V/III ratio of 4400 were favorable for lateral growth of AlGaN. It was confirmed that the $4{\mu}m$ -thick $Al_{0.2}Ga_{0.8}N$ was crack-free over entire 2-inch wafer. The dislocation density of $Al_{0.2}Ga_{0.8}N$ was as low as ${\sim}7.6{\times}10^8/cm^2$ measured by cathodoluminescence. Based on the high quality AlGaN with low dislocation density, the ultraviolet laser diode epitaxy with cladding, waveguide and GaN/AlGaN multiple quantum well (MQW) was grown by metalorganic chemical vapor deposition. The stimulated emission at 349 nm with full width at half maximum of 1.8 nm from the MQW was observed through optical pumping experiment with 193 nm KrF laser. We also have fabricated the deep ridge type ultraviolet laser diode (UV-LD) with $5{\mu}m-wide$ and $700{\mu}m-long$ cavity for electrical properties. The turn on voltage was below 5 V and the resistance was ${\sim}55{\Omega}$ at applied voltage of 10 V. The amplified spontaneous emission spectrum of UV-LD was also observed from pulsed current injection.

How Can We Erase States Inside a Black Hole?

  • Hwang, Junha;Park, Hyosub;Yeom, Dong-han;Zoe, Heeseung
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1420-1430
    • /
    • 2018
  • We investigate an entangled system, which is analogous to a composite system of a black hole and Hawking radiation. If Hawking radiation is well approximated by an outgoing particle generated from pair creation around the black hole, such a pair creation increases the total number of states. There should be a unitary mechanism to reduce the number of states inside the horizon for black hole evaporation. Because the infalling antiparticle has negative energy, as long as the infalling antiparticle finds its partner such that the two particles form a separable state, one can trace out such a zero energy system by maintaining unitarity. In this paper, based on some toy model calculations, we show that such a unitary tracing-out process is only possible before the Page time while it is impossible after the Page time. Hence, after the Page time, if we assume that the process is unitary and the Hawking pair forms a separable state, the internal number of states will monotonically increase, which is supported by the Almheiri-Marolf-Polchinski-Sully (AMPS) argument. In addition, the Hawking particles cannot generate randomness of the entire system; hence, the entanglement entropy cannot reach its maximum. Based on these results, we modify the correct form of the Page curve for the remnant picture. The most important conclusion is this: if we assume unitarity, semi-classical quantum field theory, and general relativity, then the black hole should violate the Bekenstein-Hawking entropy bound around the Page time at the latest; hence, the infinite production arguments for remnants might be applied for semi-classical black holes, which seems very problematic.

Isolation and Characterization of Novel Chlorella Species with Cold Resistance and High Lipid Accumulation for Biodiesel Production

  • Koh, Hyun Gi;Kang, Nam Kyu;Kim, Eun Kyung;Suh, William I.;Park, Won-Kun;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.952-961
    • /
    • 2019
  • Chlorella spp. are green algae that are found across wide-ranging habitats from deserts to arctic regions, with various strains having adapted to survive under diverse environmental conditions. In this study, two novel Chlorella strains (ABC-002, ABC-008) were isolated from a freshwater lake in South Korea during the winter season and examined for possible use in the biofuel production process. The comparison of ABC-002 and ABC-008 strains with Chlorella vulgaris UTEX265 under two different temperatures ($10^{\circ}C$, $25^{\circ}C$) revealed their cold-tolerant phenotypes as well as high biomass yields. The maximum quantum yields of UTEX25, ABC-002, and ABC-008 at $10^{\circ}C$ were 0.5594, 0.6747, and 0.7150, respectively, providing evidence of the relatively higher cold-resistance capabilities of these two strains. Furthermore, both the biomass yields and lipid content of the two novel strains were found to be higher than those of UTEX265; the overall lipid productivities of ABC-002 and ABC-008 were 1.7 ~ 2.8 fold and 1.6 ~ 4.2 fold higher compared to that of UTEX265, respectively. Thus, the high biomass and lipid productivity over a wide range of temperatures indicate that C. vulgaris ABC-002 and ABC-008 are promising candidates for applications in biofuel productions via outdoor biomass cultivation.

페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석 (Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions)

  • 조현아;이승민;노준홍
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF