• Title/Summary/Keyword: Quantum physics

Search Result 578, Processing Time 0.039 seconds

Formation of Al0.3Ga0.7As/GaAs Multiple Quantum Wells on Silicon Substrate with AlAsxSb1-x Step-graded Buffer (AlAsxSb1-x 단계 성분 변화 완충층을 이용한 Si (100) 기판 상 Al0.3Ga0.7As/GaAs 다중 양자 우물 형성)

  • Lee, Eun Hye;Song, Jin Dong;Yoen, Kyu Hyoek;Bae, Min Hwan;Oh, Hyun Ji;Han, Il Ki;Choi, Won Jun;Chang, Soo Kyung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.313-320
    • /
    • 2013
  • The $AlAs_xSb_{1-x}$ step-graded buffer (SGB) layer was grown on the Silicon (Si) substrate to overcome lattice mismatch between Si substrate and $Al_{0.3}Ga_{0.7}As$/GaAs multiple quantum wells (MQWs). The value of root-mean-square (RMS) surface roughness for 5 nm-thick GaAs grown on $AlAs_xSb_{1-x}$ step-graded buffer layer was ~1.7 nm. $Al_{0.3}Ga_{0.7}As$/GaAs MQWs with AlAs/GaAs short period superlattice (SPS) were formed on the $AlAs_xSb_{1-x}$/Si substrate. Photoluminescence (PL) peak at 10 K for the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure showed relatively low intensity at ~813 nm. The RMS surface roughness of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure was ~42.9 nm. The crystal defects were observed on the cross-sectional transmission electron microscope (TEM) images of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure. The decrease of PL intensity and increase of RMS surface roughness would be due to the formation of the crystal defects.

In Situ Spectroscopy in Condensed Matter Physics

  • Noh, Tae Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.92-92
    • /
    • 2014
  • Recently, many state-of-art spectroscopy techniques are used to unravel the mysteries of condensed matters. And numerous heterostructures have provided a new avenue to search for new emergent phenomena. Especially, near the interface, various forms of symmetry-breaking can appear, which induces many novel phenomena. Although these intriguing phenomena can be emerged at the interface, by using conventional measurement techniques, the experimental investigations have been limited due to the buried nature of interface. One of the ways to overcome this limitation is in situ investigation of the layer-by-layer evolution of the electronic structure with increasing of the thickness. Namely, with very thin layer, we can measure the electronic structure strongly affected by the interface effect, but with thick layer, the bulk property becomes strong. Angle-resolved photoemission spectroscopy (ARPES) is powerful tool to directly obtain electronic structure, and it is very surface sensitive. Thus, the layer-by-layer evolution of the electronic structure in oxide heterostructure can be investigated by using in situ ARPES. LaNiO3 (LNO) heterostructures have recently attracted much attention due to theoretical predictions for many intriguing quantum phenomena. The theories suggest that, by tuning external parameters such as misfit strain and dimensionality in LNO heterostructure, the latent orders, which is absent in bulk, including charge disproportionation, spin-density-wave order and Mott insulator, could be emerged in LNO heterostructure. Here, we performed in situ ARPES studies on LNO films with varying the misfit strain and thickness. (1) By using LaAlO3 (-1.3%), NdGaO3 (+0.3%), and SrTiO3 (+1.7%) substrates, we could obtain LNO films under compressive strain, nearly strain-free, and tensile strain, respectively. As strain state changes from compressive to tensile, the Ni eg bands are rearranged and cross the Fermi level, which induces a change of Fermi surface (FS) topology. Additionally, two different FS superstructures are observed depending on strain states, which are attributed to signatures of latent charge and spin orderings in LNO films. (2) We also deposited LNO ultrathin films under tensile strain with thickness between 1 and 10 unit-cells. We found that the Fermi surface nesting effect becomes strong in two-dimensions and significantly enhances spin-density-wave order. The further details are discussed more in presentation. This work was collaborated with Hyang Keun Yoo, Seung Ill Hyun, Eli Rotenberg, Ji Hoon Shim, Young Jun Chang and Hyeong-Do Kim.

  • PDF

A Study on Service Philosophy for New Economy and Society (신경제사회 중심사상으로서의 서비스철학 연구)

  • Kim, Hyunsoo
    • Journal of Service Research and Studies
    • /
    • v.9 no.4
    • /
    • pp.1-17
    • /
    • 2019
  • This study was conducted to establish a service philosophy as a major ideology in the New Economy and Society. The service philosophy, which is the ideological foundation to lead the service economy era, should be an idea that can develop the new economy society, reflecting the nature principle of the universe and human being. The service philosophy was derived based on the study of the human representative ideology and the study of the new economy and service essence. A good idea must be consistent with the principles of the universe and be consistent with the essence of the human representative ideology, so that it reflects the core principles of the universe and the core of human representative ideas. In addition, the central idea should reflect the changes of the New Economy Society in the future. Therefore, the essence of the service and the change of the New Economy Society were analyzed. We analyzed the social and philosophical significance of the macroscopic cosmology and the microscopic quantum theory of modern physics. We analyzed the essence of Oriental and Western representative ideas and derived implications of these ideas from the viewpoint of modern society where service is central. Based on the essence principle of the universe and human, we have established the service philosophy structure and derived the human, historical, social, economic, and managerial aspects of service philosophy. The structure of the derived service philosophy was presented, and discussions were conducted for future research.

Study on the Annealing Effect and Magnetic Properties of a Zn0.7Mn0.3O Film (열처리 효과에 따른 Zn0.7Mn0.3O박막의 자기 특성 연구)

  • Kim, Y.M.;Kim, Y.;Yoon, M.;Park, C.S.;Lee, Y.S.;Jeon, M.S.;Park, I.W.;Park, Y.J.;Lyou, Jong H.;Kim, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.155-159
    • /
    • 2003
  • We report on the annealing effect and ferromagnetic characteristics of Zn$_{0.7}$Mn$_{0.3}$O film prepared by sol-gel method on the silicon (100) substrate using field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry. Magnetic measurements show thatZn$_{0.7}$Mn$_{0.3}$O films exhibit ferromagnetism at 5 K revealing the coercive field of ∼110 Oe for as grown sample and 360, 1035 Oe for samples annealed at 700, 800 $^{\circ}C$, respectively. Our experimental evidence suggests that ferromagnetic precipitates of a manganese oxide may be responsible for the observed ferromagnetic behaviors of the film.he film.

Matter and Becoming in Gilbert Simondon's Theory of Individuation (물질과 생성: 질베르 시몽동의 개체화론을 중심으로)

  • Kim, Jaehee
    • Journal of Korean Philosophical Society
    • /
    • no.93
    • /
    • pp.231-260
    • /
    • 2011
  • Simondon's theory of individuation and methodology of transduction presents a possibility of contemporary natural philosophy and a new perspective about the relation between philosophy and sciences. According to Simondon's anti-substantial viewpoint, being, as a metastable system charged with potential energy, complicates itself with quantum leaps transversing successive equilibriums. Individuation is the becoming of phases of being which transits from preindividual state to individuated states. Physical individuation as a paradigmatic model of individuation in general demonstrates not only insufficiency of form-oriented hylomorphism, but also spontaneous formational capacity of matter and reality of energetic relational operation immanent in matter. Genesis of a individual (structure or form) occurs as a resolution of the disparation between orders of magnitude, that is, the difference of potentials immanent in nature through the internal resonance, communication by information, transductive relation between the opposites. I'm trying to show that Simondon revives 'physis' of ancient natural philosophy by his own transductive applications of contemporary physics' conceptions, and therefore suggest a new non-reductive materialism. Especially Simondon's 'transduction' which is neither induction, deduction, nor dialectic, but an original ontological process and a peculiar method of thinking, I think, is worthy of note in order to construct network of knowledge and inter-relation between various sciences.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

The characteristic of InGaN/GaN MQW LED by different diameter in selective area growth method (선택성장영역 크기에 따른 InGaN/GaN 다중양자우물 청색 MOCVD-발광다이오드 소자의 특성)

  • Bae, Seon-Min;Jeon, Hun-Soo;Lee, Gang-Seok;Jung, Se-Gyo;Yoon, Wi-Il;Kim, Kyoung-Hwa;Yang, Min;Yi, Sam-Nyung;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.5-10
    • /
    • 2012
  • In general, the fabrications of the LEDs with mesa structure are performed grown by MOCVD method. In order to etch and separate each chips, the LEDs are passed the RIE and scribing processes. The RIE process using plasma dry etching occur some problems such as defects, dislocations and the formation of dangling bond in surface result in decline of device characteristic. The SAG method has attracted considerable interest for the growth of high quality GaN epi layer on the sapphire substrate. In this paper, the SAG method was introduced for simplification and fabrication of the high quality epi layer. And we report that the size of selective area do not affect the characteristics of original LED. The diameter of SAG circle patterns were choose as 2500, 1000, 350, and 200 ${\mu}m$. The SAG-LEDs were measured to obtain the device characteristics using by SEM, EL and I-V. The main emission peaks of 2500, 1000, 350, and 200 ${\mu}m$ were 485, 480, 450, and 445 nm respectively. The chips of 350, 200 ${\mu}m$ diameter were observed non-uniform surface and resistance was higher than original LED, however, the chips of 2500, 1000 ${\mu}m$ diameter had uniform surface and current-voltage characteristics were better than small sizes. Therefore, we suggest that the suitable diameter which do not affect the characteristic of original LED is more than 1000 ${\mu}m$.

Clinical Study of Acute and Chronic Pain by the Application of Magnetic Resonance Analyser $I_{TM}$ (자기공명분석기를 이용한 통증관리)

  • Park, Wook;Jin, Hee-Cheol;Cho, Myun-Hyun;Yoon, Suk-Jun;Lee, Jin-Seung;Lee, Jeong-Seok;Choi, Surk-Hwan;Kim, Sung-Yell
    • The Korean Journal of Pain
    • /
    • v.6 no.2
    • /
    • pp.192-198
    • /
    • 1993
  • In 1984, a magnetic resonance spectrometer(magnetic resonance analyser, MRA $I_{TM}$) was developed by Sigrid Lipsett and Ronald J. Weinstock in the USA, Biomedical applications of the spectrometer have been examined by Dr. Hoang Van Duc(pathologist, USC), and Nakamura, et al(Japan). From their theoretical views, the biophysical functions of this machine are to analyse and synthesize a healthy tissue and organ resonance pattern, and to detect and correct an abnormal tissue and organ resonance pattern. All of the above functions are based on Quantum physics. The healthy tissue and organ resonance patterns are predetermined as standard magnetic resonance patterns by digitizing values based on peak resonance emissions(response levels or high pitched echo-sounds amplified via human body). In clinical practice, a counter or neutralizing resonance pattern calculated by the spectrometer can correct a phase-shifted resonance pattern(response levels or low pitched echo-sounds) of a diseased tissue and organ. By administering the counter resonance pattern into the site of pain and trigger point, it is possible to readjust the phase-shifted resonance pattern and then to alleviate pain through regulation of the neurotransmitter function of the nervous system. For assessing clinical effectiveness of pain relief with MRA $I_{TM}$ this study was designed to estimate pain intensity by the patient's subjective verbal rating scale(VRS such as graded to no pain, mild, moderate and severe) before application of it, to evaluate an amount of pain relief as applied the spectrometer by the patients subjective pain relief scale(visual analogue scale, VAS, 0~100%), and then to observe a continuation of pain relief following its application for managing acute and chronic pain in the 102 patients during an 8 months period beginning March, 1993. An application time of the spectrometer ranged from 15 to 30 minutes daily in each patient at or near the site of pain and trigger point when the patient wanted to be treated. The subjects consisted of 54 males and 48 females, with the age distribution between 23~40 years in 29 cases, 41~60 years in 48 cases and 61~76 years in 25 cases respectively(Table 1). The kinds of diagnosis and the main site of pain, the duration of pain before the application, and the frequency of it's application were recorded on the Table 2, 3 and 4. A distinction between acute and chronic pain was defined according to both of the pain intervals lasting within and over 3 months. The results of application of the spectrometer were noted as follows; In 51 cases of acute pain before the application, the pain intensities were rated mild in 10 cases, moderate in 15 cases and severe in 26 cases. The amounts of pain relief were noted as between 30~50% in 9 cases, 51~70% in 13 cases and 71~95% in 29 cases. The continuation of pain relief appeared between 6~24 hours in two cases, 2~5 days in 10 cases, 6~14 days in 4 cases, 15 days in one case, and completely relived of pain in 34 cases(Table 5~7). In 51 cases of chronic pain before the application, the pain intensities were rated mild in 12 cases, moderate in l8 cases and severe in 21 cases. The amounts of pain relief were noted as between 0~50% in 10 cases, 51~70% in 27 cases and 71~90% in 14 cases. The continuation of pain relief appeared to have no effect in two cases. The level of effective duration was between 6~12 hours in two cases, 2~5 days in 11 cases, 6~14 days in 14 cases, 15~60 days in 9 cases and in 13 cases the patient was completely relieved of pain(Table 5~7). There were no complications in the patients except a mild reddening and tingling sensation of skin while applying the spectrometer. Total amounts of pain relief in all of the subjects were accounted as poor and fair in 19(18.6%) cases, good in 40(39.2%) cases and excellent in 43(42.2%) cases. The clinical effectiveness of MRA $I_{TM}$ showed variable distributions from no improvements to complete relief of pain by the patient's assessment. In conclusion, we suggest that MRA $I_{TM}$ may be successful in immediate and continued pain relief but still requires several treatments for continued relief and may be gradually effective in pain relief while being applied repeatedly.

  • PDF