• Title/Summary/Keyword: Quantum dot film

Search Result 56, Processing Time 0.033 seconds

Condensable InP Quantum Dot Solids

  • Tung, Dao Duy;Dung, Mai Xuan;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.541-541
    • /
    • 2012
  • InP quantum dots capped by myristic acid (InP-MA QDs) were synthesized by a typical hot injection method using MA as stablizing agent. The current density across the InP-MA QDs thin film which was fabricated by spin-coating method is about $10^{-4}A/cm^2$ at the electric field of 0.1 MV/cm from I-V measurement on a metal-insulator-metal (MIM) device. The low conductivity of the InP-MA QDs thin film is interpreted as due to the long interdistances among the dots governed by the MA molecules. Therefore, replacing the MA with thioacetic acid (TAA) by biphasic ligand exchange was conducted in order to obtain TAA capped InP QDs (InP-TAA). InP-TAA QDs were designed due to: 1) the TAA is very short molecule; 2) the thiolate groups on the surface of the InP-TAA QDs are expected to undergo condensation reaction upon thermal annealing which connects the QDs within the QD thin film through a very short linker -S-; and 3) TAA provides better passivation to the QDs both in the solution and thin film states which minimizing the effect of surface trapping states.

  • PDF

Charged Cluster Model as a New Paradigm of Crystal Growth

  • Nong-M. Hwang;In-D. Jeon;Kim, Doh-Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.87-125
    • /
    • 2000
  • A new paradigm of crystal growth was suggested in a charged cluster model, where charged clusters of nanometer size are suspended in the gas phase in most thin film processes and are a major flux for thin film growth. The existence of these hypothetical clusters was experimentally confirmed in the diamond and silicon CVD processes as well as in gold and tungsten evaporation. These results imply new insights as to the low pressure diamond synthesis without hydrogen, epitaxial growth, selective deposition and fabrication of quantum dots, nanometer-sized powders and nanowires or nanotubes. Based on this concept, we produced such quantum dot structures of carbon, silicon, gold and tungsten. Charged clusters land preferably on conducting substrates over on insulating substrates, resulting in selective deposition. if the behavior of selective deposition is properly controlled, charged clusters can make highly anisotropic growth, leading to nanowires or nanotubes.

  • PDF

Shape anisotropy and magnetic properties of Co/Ni anti-dot arrays

  • Deshpande, N.G.;Seo, M.S.;Kim, J.M.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.444-444
    • /
    • 2011
  • Recently, patterned magnetic films and elements attract a wide interest due to their technological potentials in ultrahigh-density magnetic recording and spintronic devices. Among those patterned magnetic structures, magnetic anti-dot patterning induces a strong shape anisotropy in the film, which can control the magnetic properties such as coercivity, permeability, magnetization reversal process, and magneto-resistance. While majority of the previous works have been concentrated on anti-dot arrays with a single magnetic layer, there has been little work on multilayered anti-dot arrays. In this work, we report on study of the magnetic properties of bilayered anti-dot system consisting of upper perforated Co layer of 40 nm and lower continuous Ni layer of 5 nm thick, fabricated by photolithography and wet-etching processes. The magnetic hysteresis (M-H) loops were measured with a superconducting-quantum-interference-device (SQUID) magnetometer (Quantum Design: MPMS). For comparison, investigations on continuous Co thin film and single-layer Co anti-dot arrays were also performed. The magnetic-domain configuration has been measured by using a magnetic force microscope (PSIA: XE-100) equipped with magnetic tips (Nanosensors). An external electromagnet was employed while obtaining the MFM images. The MFM images revealed well-defined periodic domain networks which arise owing to the anisotropies such as magnetic uniaxial anisotropy, configurational anisotropy, etc. The inclusion of holes in a uniform magnetic film and the insertion of a uniform thin Ni layer, drastically affected the coercivity as compared with single Co anti-dot array, without severely affecting the saturation magnetization ($M_s$). The observed changes in the magnetic properties are closely related to the patterning that hinders the domain-wall motion as well as to the magneto-anisotropic bilayer structure.

  • PDF

Growth of Silicon-Germanium Quantum-dots Through Local Enhancement of Surface Diffusivity (표면확산계수의 국소적 향상을 통한 실리콘-게르마늄 양자점의 성장)

  • Kim, Yun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.653-657
    • /
    • 2015
  • A numerical investigation to simulate the selective growth of silicon-germanium quantum-dots via local surface diffusivity enhancement is presented. A nonlinear equation for the waviness evolution of film surface is derived to consider the effects of spatially-varying diffusivity, influenced by a surface temperature profile. Results show that the morphology of the initially planar film shapes into an undulated surface upon perturbation, and a steady-state solution describes a fully grown quantum-dot. The present study points toward a fabrication technique that can obtain selectivity for self-assembly.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Optical Simulation Study of the Improvement of Color-rendering Characteristics of White Light-emitting Diodes by Using Red Quantum-dot Films (적색 양자점 필름을 이용한 백색 발광 다이오드의 연색성 개선에 대한 광학 시뮬레이션 연구)

  • Lee, Gi Jung;Hong, Seung Chan;Lee, Jung-Gyun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.163-171
    • /
    • 2021
  • Conventional white light-emitting diodes (LEDs) for lighting applications consist of blue LEDs and yellow phosphors, the spectrum of which lacks deep red. To improve the color-rendering characteristics of white LEDs, a red quantum-dot film was applied to the diffuser plate of LED lighting. The mean free paths of the quantum dots and the concentration of the TiO2 particles in the diffuser plate were adjusted to optimize the optical structure of the lighting. The color-rendering index (CRI) was greater than 90 for most conditions, which demonstrates that adoption of the red quantum-dot film is an effective way for improving the color-rendering properties of conventional white LEDs. The angular dispersion of color coordinates could be removed by utilizing the optical cavity formed between the diffuser plate and the reflector on the bottom of the lighting, where multiple passages of the light through the quantum-dot film reduced the differences in optical path length depending on the viewing angle.

Thioacetic-Acid Capped PbS Quantum Dot Solids Exhibiting Thermally Activated Charge Hopping Transport

  • Dao, Tung Duy;Hafez, Mahmoud Elsayed;Beloborodov, I.S.;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.457-465
    • /
    • 2014
  • Size-controlled lead sulfide (PbS) quantum dots were synthesized by the typical hot injection method using oleic acid (OA) as the stabilizing agent. Subsequently, the ligand exchange reaction between OA and thioacetic acid (TAA) was employed to obtain TAA-capped PbS quantum dots (PbS-TAA QDs). The condensation reaction of the TAA ligands on the surfaces of the QDs enhanced the conductivity of the PbS-TAA QDs thin films by about 2-4 orders of magnitude, as compared with that of the PbS-OA QDs thin films. The electron transport mechanism of the PbS-TAA QDs thin films was investigated by current-voltage (I-V) measurements at different temperatures in the range of 293 K-473 K. We found that the charge transport was due to sequential tunneling of charge carriers via the QDs, resulting in the thermally activated hopping process of Arrhenius behavior.

Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode (ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화)

  • Eunyong Seo;Kyungjae Lee;Jeong Ha Hwang;Dong Hyun Kim;Jaehoon Lim;Donggu Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.455-461
    • /
    • 2023
  • We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

TOF-MEIS System을 이용한 Ultra Thin Film 및 Composition and the Core/Shell Structure of Quantum Dot 분석

  • Jeong, Gang-Won;Kim, Jae-Yeong;Mun, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.284-284
    • /
    • 2013
  • 중 에너지 이온 산란 분석법(Medium Energy Ion Scattering Spectrometer, MEIS)은 50~500 keV로 이온을 가속 후 시료에 입사시켜 시료의 원자와 핵간 충돌로 산란되는 일차이온의 에너지를 측정하여 시료를 분석하는 기법으로, 원자층의 깊이 분해능으로 초박막의 표면 계면의 조성과 구조를 분석 할수 있는 유용한 미세 분석기술이다. 본 실험에서 에너지 70~100 keV의 He+ 이온을 사용하여 Pulse Width 1 ns의 Pulsed ion beam을 만들어 Start 신호로 사용하고 Delay-line-detector에 검출된 신호를 End 신호를 이용한 TOF-MEIS System을 개발하였다. 활용 가능한 분석시편으로 Ultra thin film 시편으로 1, 1.5, 2, 2.5, 3, 4 nm의 HfO2, 1.8, 4nm의 SiO2 시편을 분석 하였으며 Ultra Shallow Junction 시편으로 As Doped Si, Cs Doped Si 시편 및 Composition, Core/shell 구조의 Q-dot 시편으로 CdSe, CdSe/ZnS등 다양한 분석 실험을 진행 하였다. Composition, Core/shell 구조의 Q-dot 시편은 Diamond Like Carbon(DLC)의 Substrate에 Mono-layer로 형성하여 분석하였다.

  • PDF