• Title/Summary/Keyword: Quantum Dynamics

Search Result 93, Processing Time 0.029 seconds

The Mechanism : Hydrolysis of Formamide

  • Baek, Yong-Su;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.91-98
    • /
    • 2015
  • Formamide의 중성가수분해 mechanism은 QM/MM (quantum mecahnics/molecular mechanics) molecular dynamics simulations 및 CPMD과 같은 방법으로 연구되어왔다. 본 연구에서는. Umbrella sampling을 이용한 QM/MM-MD simulation을 사용하여 4가지 반응의 free energy surface를 도출해냈다. 전체적으로, 가장 선호되는 메커니즘은 two step으로 구성된 water assisted stepwise mechanism이었으며 모든 mechanism은 ab-initio calculation과 QM/MM-MD simulation이 수행되었다. water assisted stepwise mechanism을 살펴보면, 첫 번째 step에서 formamide의 carbonyl group이 hydrate되면서 gem-diol intermediate를 형성한다. 다음 step에서, intermediate의 hydroxyl group으로부터 amino group으로 water-assisted proton transfer이 일어난다. 두 반응 모두에서 물이 proton transfer를 직접적으로 도와주는 것을 관찰할 수 있었다. 특히, ab-initio calculation과는 다르게 QM/MM-MD에서는 gem-diol intermediate가 안정화되는 것으로 solvent effect를 잘 보여준다.

  • PDF

The theory of non-Markovian optical gain in excited semiconductors

  • Ahn, Doyeol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.138-148
    • /
    • 1995
  • A reduced description of the dynamics of carriers in excited semiconductors is presented. Fristly, a time-convolutionless equation of motion for the reduced density operator is derved from the microscopic Liouville wquation operator method. Secondly, the quantum kinetic equations for intercting electron-hole parirs near band-edge in semiconductors under an extermal optical field are obtained from the equation of motion for the reduced density operator. The non-Markovian optical gain of a driven semiconductor is derived including the many-body effects. plasma screening and excitinic effects are taken into account using as effective Hamiltonian in the time-dependent Hartree-Fock approximation. it is shown that the line shape of optical-gain spectra gain is enhanced by the exicitonic effects caused by the attrative electron-hole Coulomb interaction and the interference effects (renormalized memory effects) between the extermal driving filed and the intermal driving Filed and the stochastic reservoir of the system.

  • PDF

Dealing with gravity on galactic scales

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In analogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles - gravitons - with very small but non-zero masses. The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, and the surface brightness-acceleration relation of galaxies correctly; additional (dark) mass components are not required. The well-established empirical scaling laws of Modified Newtonian Dynamics follow naturally from the model. The scheme I present is not a consistent theory of gravitation; rather, it is a toy model providing a convenient scaling law that simplifies the description of gravity on galactic scales.

  • PDF

Molecular Nodeling of Complexation of Alkyl Ammonium Ions by p-tert-Butylcalix[4]crown-6-ether

  • Choe, Jong In;Kim, Gwang Ho;Jang, Seok Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.465-470
    • /
    • 2000
  • The conformations and energies of p-tert-butylcalix[4] crown-6-ether (1) and its alkyl ammonium complexes have been simulated by AM1 semi-empirical quantum mechanics and molecular mechanics calculations using a variety of forcefields (MM2, MM+, CVFF). We performed molecular dynamics calculations to simulate the behavior of these coplexes primartily focusing on the three representative conformations (cone, partial cone, 1,3-alternate) of host molecule 1. When we performed AM1 semi-empirical and molecular mechanics calculations, the one conformation was generally found to be most stable for all the employed calculation methods. The primary binding site of host 1 for the recognition of alkyl ammonium guests was confirmed to be the central part of the crown moiety. The complexation enthalpy calculations revealed that the alkyl amonium cations having smaller and linear alkyl group showed the better complexation efficiencies when combined with p-tert-butylcalix[4]crown-6-ether, that is in satisfactory agreement with the experimental results.

A REVIEW OF STUDIES ON OPERATOR'S INFORMATION SEARCHING BEHAVIOR FOR HUMAN FACTORS STUDIES IN NPP MCRS

  • Ha, Jun-Su;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.247-270
    • /
    • 2009
  • This paper reviews studies on information searching behavior in process control systems and discusses some implications learned from previous studies for use in human factors studies on nuclear power plants (NPPs) main control rooms (MCRs). Information searching behavior in NPPs depends on expectancy, value, salience, and effort. The first quantitative scanning model developed by Senders for instrument panel monitoring considered bandwidth (change rate) of instruments as a determining factor in scanning behavior. Senders' model was subsequently elaborated by other researchers to account for value in addition to bandwidth. There is also another type of model based on the operator's situation awareness (SA) which has been developed for NPP application. In these SA-based models, situation-event relations or rules on system dynamics are considered the most significant factor forming expectancy. From the review of previous studies it is recommended that, for NPP application, (1) a set of symptomatic information sources including both changed and unchanged symptoms should be considered along with bandwidth as determining factors governing information searching (or visual sampling) behavior; (2) both data-driven monitoring and knowledge-driven monitoring should be considered and balanced in a systematic way; (3) sound models describing mechanisms of cognitive activities during information searching tasks should be developed so as to bridge studies on information searching behavior and design improvement in HMI; (4) the attention-situation awareness (A-SA) modeling approach should be recognized as a promising approach to be examined further; and (5) information displays should be expected to have totally different characteristics in advanced control rooms. Hence much attention should be devoted to information searching behavior including human-machine interface (HMI) design and human cognitive processes.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

Photodissociation Dynamics of Allyl Alcohol in UV: The Exit Channel Barrier for OH Production

  • Lee, Ji-Hye;Kang, Tae-Yeon;Kwon, Chan-Ho;Hwang, Hyon-Seok;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.510-514
    • /
    • 2011
  • Photodissociation dynamics of allyl alcohol ($H_2C$=CH-$CH_2OH$) has been investigated at 205 - 213 nm along the UV absorption band by measuring rotationally-resolved laser-induced fluorescence spectra of OH radicals. Observed energy partitioning of the available energy among products at all photon energies investigated was similar and the barrier energy for OH production is about 574.7 kJ/mol from the OH yield measurements. The potential energy surfaces for the $S_0$, $T_1$, and $S_1$ excited states along the dissociation coordinate were obtained by ab initio quantum chemical calculations. The observed energy partitioning was successfully modeled by the "barrier-impulsive model" with the reverse barrier and the geometry obtained by the calculated potential energy surfaces. The dissociation takes place on the $T_1$ excited state potential energy surface with an energy barrier in the exit channel and a large portion of the photon energy is distributed in the internal degrees of freedom of the polyatomic products.

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

A SIMPLIFIED TREATMENT OF GRAVITATIONAL INTERACTION ON GALACTIC SCALES

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In anal- ogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles-gravitons-with very small but non-zero masses. The resulting den- sity and mass profiles are proportional to the mass of the gravitating body. The mass profile scales with the centripetal acceleration experienced by a test particle orbiting the central mass, but this comes at the cost of postulating a universal characteristic acceleration $a_0{\approx}4.3{\times}10^{-12}msec^{-2}$ (or $8{\pi}a_0{\approx}1.1{\times}10^{-10}msec^{-2}$). The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, the surface brightness-acceleration relation of galaxies, the kinematics of galaxy clusters, and "Renzo's rule" correctly; additional (dark) mass components are not required. Given that it is based on various ad-hoc assumptions and given further limitations, the scheme I present is not yet a consistent theory of gravitation; rather, it is a "toy model" providing a convenient scaling law that simplifies the description of gravity on galactic scales.