Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.2.510

Photodissociation Dynamics of Allyl Alcohol in UV: The Exit Channel Barrier for OH Production  

Lee, Ji-Hye (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Kang, Tae-Yeon (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Kwon, Chan-Ho (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Hwang, Hyon-Seok (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Kim, Hong-Lae (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Publication Information
Abstract
Photodissociation dynamics of allyl alcohol ($H_2C$=CH-$CH_2OH$) has been investigated at 205 - 213 nm along the UV absorption band by measuring rotationally-resolved laser-induced fluorescence spectra of OH radicals. Observed energy partitioning of the available energy among products at all photon energies investigated was similar and the barrier energy for OH production is about 574.7 kJ/mol from the OH yield measurements. The potential energy surfaces for the $S_0$, $T_1$, and $S_1$ excited states along the dissociation coordinate were obtained by ab initio quantum chemical calculations. The observed energy partitioning was successfully modeled by the "barrier-impulsive model" with the reverse barrier and the geometry obtained by the calculated potential energy surfaces. The dissociation takes place on the $T_1$ excited state potential energy surface with an energy barrier in the exit channel and a large portion of the photon energy is distributed in the internal degrees of freedom of the polyatomic products.
Keywords
Photodissociation; Allyl alcohol; Exit channel barrier;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Chang, A. H. H.; Hwang, D. W.; Yang, X. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T. J. Chem. Phys. 1999, 110, 10810.   DOI
2 Gaussian 09; Gaussian Inc.: Pittsburgh, PA, 2009.
3 Cramer, C. J. Essentials of Computational Chemistry; John Wiley & Sons: West Sussex, 2004.
4 Kaduk, B.; Voorhis, T. V. J. Chem. Phys. 2010, 133, 061102.   DOI   ScienceOn
5 Lee, J. H.; Hwang, H.; Kwon, C. H.; Kim, H. L. J. Phys. Chem. A 2010, 114, 2053.   DOI   ScienceOn
6 Schinke, R. Photodissociation Dynamics; Cambridge University Press: Cambridge, 1993.
7 Dhanya, S.; Kumar, A.; Upadhyaya, H. P.; Prakash, D. N.; Rameshwar, D. S. J. Phys. Chem. A 2004, 108, 7646.   DOI   ScienceOn
8 Kang, T. Y.; Shin, S. K.; Kim, H. L. J. Phys. Chem. A 2003, 107, 10888.   DOI   ScienceOn
9 Parsons, B. F.; Szpunar, D. E.; Butler, L. J. J. Phys. Chem. A 2000, 104, 10669.   DOI   ScienceOn
10 Dieke, G. H.; Crosswhite, H. M. J. Quant. Spectrosc. Radiat. Transfer 1962, 2, 97.   DOI   ScienceOn
11 Chidsey, I. L.; Crosley, D. R. J. Quant. Spectrosc. Radiat. Transfer 1980, 23, 187.   DOI   ScienceOn
12 Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626.   DOI
13 Tuck, A. F. J. Chem. Soc. Faraday Trans. II 1977, 73, 689.   DOI
14 Zamir, E.; Levin, R. D. Chem. Phys. 1980, 52, 253.   DOI   ScienceOn
15 Levin, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford Univ. Press: New York, 1987.
16 Arunan, E.; Wategaonkar, S. J.; Setser, D. W. J. Phys. Chem. 1991, 95, 1539.   DOI
17 Dong, E.; Setser, D. W.; Hase, W. L.; Song, K. J. Phys. Chem. A 2006, 110, 1484.   DOI   ScienceOn