• 제목/요약/키워드: Quantum Dot

검색결과 427건 처리시간 0.029초

나노튜브 전극 기반 양자점 감응 태양전지 구현을 위한 투명한 상대전극 (Transparent Counter Electrode for Quantum Dot-Sensitized Solar Cells with Nanotube Electrodes)

  • 김재엽
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.1-5
    • /
    • 2019
  • Anodic oxidized $TiO_2$ nanotube arrays are promising materials for application in photoelectrochemical solar cells as the photoanode, because of their attractive properties including slow electron recombination rate, superior light scattering, and smooth electrolyte diffusion. However, because of the opacity of these nanotube electrodes, the back-side illumination is inevitable for the application in solar cells. Therefore, for the fabrication of solar cells with the anodic oxidized nanotube electrodes, it is required to develop efficient and transparent counter electrodes. Here, we demonstrate quantum dot-sensitized solar cells (QDSCs) based on the nanotube photoanode and transparent counter electrodes. The transparent counter electrodes based on Pt electrocatalysts were prepared by a simple thermal decomposition methods. The photovoltaic performances of QDSCs with nanotube photoanode were tested and optimized depending on the concentration of Pt precursor solutions for the preparation of counter electrodes.

Ultradense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate

  • Abbasizadeh, Akram;Mosleh, Mohammad
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.912-921
    • /
    • 2020
  • Quantum-dot cellular automata (QCA) is an alternative complementary metal-oxide-semiconductor (CMOS) technology that is used to implement high-speed logical circuits at the atomic or molecular scale. In this study, an optimal 2-to-4 decoder in QCA is presented. The proposed QCA decoder is designed using a new formulation based on the MV32 gate. Notably, the MV32 gate has three inputs and two outputs, which is equivalent two 3-input majority gates, and operates based on cellular interactions. A multilayer design is suggested for the proposed decoder. Subsequently, a new and efficient 3-to-8 QCA decoder architecture is presented using the proposed 2-to-4 QCA decoder. The simulation results of the QCADesigner 2.0.3 software show that the proposed decoders perform well. Comparisons show that the proposed 2-to-4 QCA decoder is superior to the previously proposed ones in terms of cell count, occupied area, and delay.

The Influence of Confining Parameters on the Ground State Properties of Interacting Electrons in a Two-dimensional Quantum Dot with Gaussian Potential

  • Gulveren, Berna
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1612-1618
    • /
    • 2018
  • In this work, the ground-state properties of an interacting electron gas confined in a two-dimensional quantum dot system with the Gaussian potential ${\upsilon}(r)=V_0(1-{\exp}(-r^2/p))$, where $V_0$ and p are confinement parameters, are determined numerically by using the Thomas-Fermi approximation. The shape of the potential is modified by changing the $V_0$ and the p values, and the influence of the confining potential on the system's properties, such as the chemical energy, the density profile, the kinetic energy, the confining energy, etc., is analyzed for both the non-interacting and the interacting cases. The results are compared with those calculated for a harmonic potential, and excellent agreement is obtained in the limit of high p values for both the non-interacting and the interacting cases.

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성 (Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

InGaAs 양자점 레이저 다이오드와 양자우물 레이저 다이오드의 특성 비교 (Comparisons of lasing characteristics of InGaAs quantum-dot and quantum well laser diodes)

  • 정경욱;김광웅;유성필;조남기;박성준;송진동;최원준;이정일;양해석
    • 한국진공학회지
    • /
    • 제16권5호
    • /
    • pp.371-376
    • /
    • 2007
  • 분자선 에피택시(molecular beam epitaxy, MBE)로 성장된 InGaAs 양자점 레이저 다이오드(quantum dot laser diode, QD-LD)와 InGaAs 양자우물 레이저 다이오드(quantum well laser diode, QW-LD)의 특성을 비교하였다. 펄스 입력전류 하에서 문턱전류밀도(threshold current density, $J_{th}$), 특성온도(characteristic temperature, $T_0$), 온도에 따른 발진파장의 변화도($d{\lambda}/dT$)를 측정한 결과, 양자우물 레이저 다이오드는 $J_{th}\;=\;322\;A/cm^2,\;T_0\;=\;55.2\;K,\;d{\lambda}/dT\;=\;0.41\;nm/^{\circ}C$로 측정되었으며, 양자점 레이저 다이오드는 $J_{th}\;=\;116\;A/cm^2,\;T_0\;=\;81.8\;K,\;d{\lambda}/dT\;=\;0.33\;nm/^{\circ}C$로 측정되었다. 양자점 레이저 다이오드는 양자우물 레이저 다이오드와 비교하였을 때, 문턱전류밀도 및 발진 광 파워가 상대적으로 우수한 결과를 보여주었다.

양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상 (Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots)

  • 지승환;윤혜원;이진호;김범성;김우병
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.16-22
    • /
    • 2021
  • In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/㎠ and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/㎠ and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.

Efficiency enhancement of spray QD solar cells

  • Park, Dasom;Lee, Wonseok;Jang, Jinwoong;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.420.1-420.1
    • /
    • 2016
  • Colloidal quantum dot (CQD) is emerging as a promising active material for next-generation solar cell applications because of its inexpensive and solution-processable characteristics as well as unique properties such as a tunable band-gap due to the quantum-size effect and multiple exciton generation. However, the most widely used spin-coating method for the formation of the quantum dot (QD) active layers is generally hard to be adopted for high productivity and large-area process. Instead, the spray-coating technique may potentially be utilized for high-throughput production of the CQD solar cells (CQDSCs) because it can be adapted to continuous process and large-area deposition on various substrates although the cell efficiency is still lower than that of the devices fabricated with spin-coating method. In this work, we observed that the subsequent treatment of two different ligands, halide ion and butanedithiol, on the lead sulfide (PbS) QD layer significantly enhanced the cell efficiency of the spray CQDSCs. The maximum power conversion efficiency was 5.3%, comparable to that of the spin-coating CQDSCs.

  • PDF

ITO-Ag NW기반 투명 양자점 발광 다이오드 (ITO-Ag NW based Transparent Quantum Dot Light Emitting Diode)

  • 강태욱;김효준;정용석;김종수
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.421-425
    • /
    • 2020
  • A transparent quantum dot (QD)-based light-emitting diode (LED) with silver nanowire (Ag NW) and indium-tin oxide (ITO) hybrid electrode is demonstrated. The device consists of an Ag NW-ITO hybrid cathode (-), zinc oxide, poly (9-vinylcarbazole) (PVK), CdSe/CdZnS QD, tungsten trioxide, and ITO anode (+). The device shows pure green-color emission peaking at 548 nm, with a narrow spectral half width of 43 nm. Devices with hybrid cathodes show better performances, including higher luminance with higher current density, and lower threshold voltage of 5 V, compared with the reference device with a pure Ag NW cathode. It is worth noting that our transparent device with hybrid cathode exhibits a lifetime 9,300 seconds longer than that of a device with Ag NW cathode. This is the reason that the ITO overlayer can protect against oxidization of Ag NW, and the Ag NW underlayer can reduce the junction resistance and spread the current efficiently. The hybrid cathode for our transparent QD LED can applicable to other quantum structure-based optical devices.

Effect of Ultrathin Al2O3 Layer on TiO2 Surface in CdS/CdSe Co-Sensitized Quantum Dot Solar Cells

  • Sung, Sang Do;Lim, Iseul;Kim, Myung Soo;Lee, Wan In
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.411-414
    • /
    • 2013
  • In order to enhance the photovoltaic property of the CdS/CdSe co-sensitized quantum dot sensitized solar cells (QDSSCs), the surface of nanoporous $TiO_2$ photoanode was modified by ultrathin $Al_2O_3$ layer before the deposition of quantum dots (QDs). The $Al_2O_3$ layer, dip-coated by 0.10 M Al precursor solution, exhibited the optimized performance in blocking the back-reaction of the photo-injected electrons from $TiO_2$ conduction band (CB) to polysulfide electrolyte. Transient photocurrent spectra revealed that the electron lifetime (${\tau}_e$) increased significantly by introducing the ultrathin $Al_2O_3$ layer on $TiO_2$ surface, whereas the electron diffusion coefficient ($D_e$) was not varied. As a result, the $V_{oc}$ increased from 0.487 to 0.545 V, without appreciable change in short circuit current ($J_{sc}$), thus inducing the enhancement of photovoltaic conversion efficiency (${\eta}$) from 3.01% to 3.38%.