• 제목/요약/키워드: Quantum Circuit

검색결과 172건 처리시간 0.026초

대형 RSFQ 회로의 구성 (Issues in Building Large RSFQ Circuits)

  • 강준희
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 2001
  • Practical implementation of the SFQ technology in most application requires more than single-chip-level circuit complexity. Multiple chips have to be integrated with a technology that is reliable at cryogenic temperatures and supports an inter-chip data transmission speed of tens of GHz. In this work, we have studied two basic issues in building large RSFQ circuits. The first is the reliable inter-chip SFQ pulse transfer technique using Multi-Chip-Module (MCM) technology. By noting that the energy contained in an SFQ pulse is less than an attojoule, it is not very surprising that the direct transmission of a single SFQ pulse through MCM solder bump connectors can be difficult and an innovative technique is needed. The second is the recycling of the bias currents. Since RSFQ circuits are dc current biased the large RSFQ circuits need serial biasing to reduce the total amount of current input to the circuit.

  • PDF

Effect of p-type a-SiO:H buffer layer at the interface of TCO and p-type layer in hydrogenated amorphous silicon solar cells

  • Kim, Youngkuk;Iftiquar, S.M.;Park, Jinjoo;Lee, Jeongchul;Yi, Junsin
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.336-340
    • /
    • 2012
  • Wide band gap p-type hydrogenated amorphous silicon oxide (a-SiO:H) buffer layer has been used at the interface of transparent conductive oxide (TCO) and hydrogenated amorphous silicon (a-Si:H) p-type layer of a p-i-n type a-Si:H solar cell. Introduction of 5 nm thick buffer layer improves in blue response of the cell along with 0.5% enhancement of photovoltaic conversion efficiency (η). The cells with buffer layer show higher open circuit voltage (Voc), fill factor (FF), short circuit current density (Jsc) and improved blue response with respect to the cell without buffer layer.

3차원의 회로 모델링을 이용한 청색 GaN/InGaN LED의 전류 확산 효과에 관한 연구 (Study on the Current Spreading Effect of Blue GaN/InGaN LED using 3-Dimensional Circuit Modeling)

  • 황성민;심종인
    • 한국광학회지
    • /
    • 제18권2호
    • /
    • pp.155-161
    • /
    • 2007
  • 본 논문에서는 GaN/InGaN 다중양자우물(MQW)의 청색 발광 다이오드(LED)에서의 3차원적인 전류 및 2차원적인 광 분포를 보여 주기 위해 새롭고 간단한 3차원 회로 모델링과 해석이 처음으로 제안되었으며 이를 실험적으로 검증하였다. LED의 회로 파라미터들은 금속 및 에피 박막의 저항과 다이오드만으로 이루어져 있으며 각각의 파라미터는 전송선 모델(TLM) 및 전압-전류의 특성으로부터 얻을 수 있다. 제안된 방법과 회로 파라미터를 상부로 발광하는(top-surface emitting) LED에 적용하여 금속 및 에피 박막의 각 저항 변화에 따라 활성층을 지나가는 전류 분포의 효과를 정량적으로 해석하였다. 그리고 제작된 청색 LED 소자의 발광 분포는 p-전극 주위에서 어두운 발광 분포를 보이는 해석 결과와 유사한 경향을 보여주었다.

RSFQ 4-bit ALU 개발 (Development of an RSFQ 4-bit ALU)

  • 김진영;백승헌;김세훈;정구락;임해용;박종혁;강준희;한택상
    • Progress in Superconductivity
    • /
    • 제6권2호
    • /
    • pp.104-107
    • /
    • 2005
  • We have developed and tested an RSFQ 4-bit Arithmetic Logic Unit (ALU) based on half adder cells and de switches. ALU is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. We have simulated the circuit by using Josephson circuit simulation tools in order to reduce the timing problem, and confirmed the correct operation of the designed ALU. We used simulation tools of $XIC^{TM},\;WRspice^{TM}$, and Julia. The fabricated 4-bit ALU circuit had a size of $\3000{\ cal}um{\times}1500{\cal}$, and the chip size was $5{\cal} mm{\times}5{\cal}mm$. The test speeds were 1000 kHz and 5 GHz. For high-speed test, we used an eye-diagram technique. Our 4-bit ALU operated correctly up to 5 GHz clock frequency. The chip was tested at the liquid-helium temperature.

  • PDF

초전도 Pipelined Multi-Bit ALU에 대한 연구 (Study of the Superconductive Pipelined Multi-Bit ALU)

  • 김진영;고지훈;강준희
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.109-113
    • /
    • 2006
  • The Arithmetic Logic Unit (ALU) is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. We have developed and tested an RSFQ multi-bit ALU constructed with half adder unit cells. To reduce the complexity of the ALU, We used half adder unit cells. The unit cells were constructed of one half adder and three de switches. The timing problem in the complex circuits has been a very important issue. We have calculated the delay time of all components in the circuit by using Josephson circuit simulation tools of XIC, $WRspice^{TM}$, and Julia. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. The fabricated 1-bit, 2-bit, and 4-bit ALU circuits were tested at a few kilo-hertz clock frequency as well as a few tens giga-hertz clock frequency, respectively. For high-speed tests, we used an eye-diagram technique. Our 4-bit ALU operated correctly at up to 5 GHz clock frequency.

  • PDF

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석 (An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells)

  • 김수민;배수현;김영도;박성은;강윤묵;이해석;김동환
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

전하밀도파 이론으로 결정질 태양전지의 입사각에 따른 단락전류밀도 변화 연구 (Research on Changes in Short Circuit Current of C-Si Solar Cell by Charge Density Waves)

  • 서일원;구제환;윤명수;조태훈;이원영;조광섭;권기청
    • 한국진공학회지
    • /
    • 제22권4호
    • /
    • pp.218-224
    • /
    • 2013
  • 광 입사각에 따른 태양전지의 양자효율을 전류의 출력으로 변환시켜 측정하였다. 기존의 태양전지의 원리는 태양전지가 태양광을 받았을 때 전자와 전공으로 분리되어 전류가 흐르게 된다는 것이었다. 그렇지만 저자들 중에 일부가 얼마 전에 태양전지원리를 새롭게 주장한 바 있다. 그 이론은 전하밀도파(charge density wave)들이 고정(pinning) 되었을 때, 이 고정 전위벽(pinning potential barrier)을 태양 광에 의해 넘을 수 있어서 전자 덩어리에 의한 전류 즉 단락전류($I_{SC}$)가 가능하다는 것이었다. 본 실험에서는 태양광의 입사각에 따른 태양전지의 단락전류밀도 ($J_{SC}$)를 측정하여 비교해본 결과 측정값들과 전하밀도파 이론과 매우 일치함을 보인다.

Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석 (Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy)

  • 허진희
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.