• Title/Summary/Keyword: Quantum Bit

Search Result 67, Processing Time 0.021 seconds

Development of a STEAM Program to Learn the Principles of Quantum Mechanics by applying the Gamification Mechanism (게이미피케이션 메카니즘을 적용한 양자역학 원리를 배우는 STEAM 프로그램 개발)

  • Ko, Daehoon;Park, Namje
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.5
    • /
    • pp.507-518
    • /
    • 2016
  • In this paper, in order to offer the opportunity to indirectly experience STEAM education and the profession of a quantum computer professional, one of computer experts as a promising occupation of the future, its correlation to the national curriculum was analyzed. STEAM educational program in this paper was developed through which the third or fourth graders in elementary schools can learn about a quantum computer expert and think about it in relevance to their future careers. Yet, it's almost impossible for the students to understand the basic theories of quantum computer based on quantum mechanics, one of most difficult areas of physics. Accordingly, in this proposed textbook, gamification mechanism was applied to arouse students' interest. Moreover, the textbook was developed and applied to the field directly in the way that students would be able to indirectly experience quantum spin, one of most basic principles of quantum computer, quantum cryptography related to quantum computer, incomplete quantum computer and etc. The STEAM educational program for future careers offered in this research is expected to create positive effects for students to explore careers relevant to IT, and to develop related qualities.

Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power (최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석)

  • Lim, Youn-Sup;Choi, Young-Wan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.66-79
    • /
    • 1999
  • We investigate the effects of high input power on the performance of optical bistable symmetric self-electooptic effect devices (S-SEEDs) using extremely shallow quantum wells (ESQWs). In this study, we consider the four ESQWs SEEDs; anti-reflection (AR)-coated ESQWs S-SEED, back-to-back AR coated ESQWs S-SEED, asymmetric F뮤교-Perot (AFP) ESQWs S-SEED, and back-to-back AFP-ESQWs S-SEED. As the input power increases, device performances such as on/off contrast ratio, on/off reflectivity difference are seriously degraded because of ohmic heating and exciton saturation. On the other hand, switching speed of the device increases up to certain value and then begins to decrease. With reasonable optimization of the input power for the best switching speed operation of the devices in a cascading optical interconnection system, we simulate and analyze the system bit-rate of the various ESQWs S-SEEDs, for a mesa of $5{\times}5{\mu}m^2$ size, changing the namber of quantum wells for the external bias of 0 V and -5V.

  • PDF

Optimized QCA SRAM cell and array in nanoscale based on multiplexer with energy and cost analysis

  • Moein Kianpour;Reza Sabbaghi-Nadooshan;Majid Mohammadi;Behzad Ebrahimi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.521-531
    • /
    • 2023
  • Quantum-dot cellular automata (QCA) has shown great potential in the nanoscale regime as a replacement for CMOS technology. This work presents a specific approach to static random-access memory (SRAM) cell based on 2:1 multiplexer, 4-bit SRAM array, and 32-bit SRAM array in QCA. By utilizing the proposed SRAM array, a single-layer 16×32-bit SRAM with the read/write capability is presented using an optimized signal distribution network (SDN) crossover technique. In the present study, an extremely-optimized 2:1 multiplexer is proposed, which is used to implement an extremely-optimized SRAM cell. The results of simulation show the superiority of the proposed 2:1 multiplexer and SRAM cell. This study also provides a more efficient and accurate method for calculating QCA costs. The proposed extremely-optimized SRAM cell and SRAM arrays are advantageous in terms of complexity, delay, area, and QCA cost parameters in comparison with previous designs in QCA, CMOS, and FinFET technologies. Moreover, compared to previous designs in QCA and FinFET technologies, the proposed structure saves total energy consisting of overall energy consumption, switching energy dissipation, and leakage energy dissipation. The energy and structural analyses of the proposed scheme are performed in QCAPro and QCADesigner 2.0.3 tools. According to the simulation results and comparison with previous high-quality studies based on QCA and FinFET design approaches, the proposed SRAM reduces the overall energy consumption by 25%, occupies 33% smaller area, and requires 15% fewer cells. Moreover, the QCA cost is reduced by 35% compared to outstanding designs in the literature.

Bit Error Rate measurement of an RSFQ switch by using an automatic error counter (자동 Error counter를 이용한 RSFQ switch 소자의 Bit Error Rate 측정)

  • Kim Se Hoon;Kim Jin Young;Baek Seung Hun;Jung Ku Rak;Hahn Taek Sang;Kang Joon Hee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.21-24
    • /
    • 2005
  • The problem of fluctuation-induced digital errors in a rapid single flux quantum (RSFQ) circuit has been very important issue. So in this experiment, we calculated error rate of RSFQ switch in superconductiyity ALU, The RSFQ switch should have a very low error rate in the optimal bias. We prepared two circuits Placed in parallel. One was a 10 Josephson transmission lines (JTLs) connected in series, and the other was the same circuit but with an RSFQ switch placed in the middle of the 10 JTLs. We used a splitter to feed the same input signal to the both circuits. The outputs of the two circuits were compared with an RSFQ XOR to measure the error rate of the RSFQ switch. By using a computerized bit error rate test setup, we measured the bit error rate of 2.18$\times$$10^{12}$ when the bias to the RSFQ switch was 0.398mh that was quite off from the optimum bias of 0.6mA.

Real-time 256-channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호획득을 위한 실시간 256-채널 12-bit 1ks/s 하드웨어)

  • Yoo, Jae-Tack
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.643-649
    • /
    • 2005
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUD) sensors for precise MCG(MagnetoCardioGram) signal acquisitions. Such system needs to deal with hundreds of sensors, requiring fast signal sampling md precise analog-to-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit in 1 ks/s speed, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and specially designed parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 mili-second sampling interval. We extend the design into 256-channel hardware and analyze the speed .using the measured data from the 64-channel hardware. Since our design exploits full parallel processing, Assembly level coding, and NOP(No Operation) instruction for timing control, the design provides expandability and lowest system timing margin. Our result concludes that the data collection with 256-channel analog input signals can be done in 201.5us time-interval which is much shorter than the required 1 mili-second period.

Comments on the ICSID Award Ansung Housing v. People's Republic of China (안성주택과 중국의 ICSID 중재사건에 관한 사례연구)

  • Kang, Pyoung-Keun
    • Journal of Arbitration Studies
    • /
    • v.27 no.2
    • /
    • pp.37-57
    • /
    • 2017
  • On 9 March 2017, a Tribunal constituted under the ICSID Convention issued its ruling in the case of Ansung Housing v. People's Republic of China, dismissing with prejudice all claims made by the Claimant, Ansung Housing Co., Ltd., in its Request for Arbitration, pursuant to ICSID Arbitration Rule 41(5). Ansung Housing v. PRC has drawn attention since it is the first case where an investor with Korean nationality initiated an ICSID arbitration on the basis of the Korea-China Bilateral Investment Treaty (BIT) as amended in 2007 between the Republic of Korea and the People's Republic of China. The Tribunal finds that its ruling is about a lack of jurisdiction of the ICSID and of its own competence as well as regarding manifest lack of legal merit due to a lack of temporal jurisdiction, since a Respondent's Rule 41(5) objection is concerned with the three-year limitation period in Article 9(7) of the Korea-China BIT. The Tribunal held that, under Article 9(7) of the Korea-China BIT, the limitation period begins with an investor's first knowledge of the fact that it has incurred loss or damage, not with the date on which it gains knowledge of the quantum of that loss or damage. Finally, the Tribunal held that Ansung submitted its dispute to ICSID and made its claim for purposes of Article 9(3) and (7) of the BIT after more than three years had elapsed from the date on which Ansung first acquired knowledge of loss or damage and that the claim is time-barred and, as such, is manifestly without legal merit. It remains to be seen whether the aggrieved Claimant initiates annulment proceedings before an ad hoc committee under the ICSID Convention. It is quite interesting to see whether the decisions by the Tribunal should be reversed on the basis of the Claimant's arguments as to the start date as well as the end date of the limitation period under the Korea-China BIT.

Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques

  • Sharma, Teena;Maddila, Ravi Kumar;Aljunid, Syed Alwee
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.531-540
    • /
    • 2019
  • Spectral Amplitude Coding Optical Code Division Multiple Access (SAC OCDMA) is an advanced technique in asynchronous environments. This paper proposes design and implementation of a novel quantum logic gate (QLG) code, with code construction algorithm generated without following any code mapping procedures for SAC system. The proposed code has a unitary matrices property with maximum overlap of one chip for various clients and no overlaps in spectra for the rest of the subscribers. Results indicate that a single algorithm produces the same length increment for codes with weight greater than two and follows the same signal to noise ratio (SNR) and bit error rate (BER) calculations for a higher number of users. This paper further examines the performance of a QLG code based SAC-OCDMA system with NAND and direct detection techniques. BER analysis was carried out for the proposed code and results were compared with existing MDW, RD and GMP codes. We demonstrate that the QLG code based system performs better in terms of cardinality, which is followed by improved BER. Numerical analysis reveals that for error free transmission (10-9), the suggested code supports approximately 170 users with code weight 4. Our results also conclude that the proposed code provides improvement in the code construction, cross-correlation and minimization of noises.

Simulation of HTS RSFQ A/D Converter and its Layout (고온 초전도 RSFQ A/D 변환기의 시물레이션과 설계)

  • 남두우;정구락;강준희
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.8-12
    • /
    • 2002
  • Since the high performance analog-to-digital converter can be built with Rapid Single Flux Quantum (RSFQ) logic circuits the development of superconductive analog-to-digital converter has attracted a lot of interests as one of the most prospective area of the application of Josephson Junction technology. One of the main advantages in using Rapid Sng1e Flux Quantum logic in the analog-to-digital converter is the low voltage output from the Josephson junction switching, and hence the high resolution. To design an analog-digital converter, first we have used XIC tool to compose a circuit schematic, and then studied the operational principle of the circuit with WRSPICE tool. Through this process, we obtained the proper circuit diagram of an 1-bit analog-digital converter circuit. The optimized circuit was laid out as a mask drawing. Inductance values of the circuit layout were calculated with L-meter.

Measurement of distance-dependent quantum bit error rate in two-way quantum key distribution systems (양방향 양자키분배 시스템에서 전송거리에 따른 오류율 측정)

  • Lee, Seung-Hun;Jeong, Gyu-Hyeon;Kim, Seung-Hwan;Lee, Min-Hui;Kim, Gyeong-Heon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.307-308
    • /
    • 2008
  • 본 논문에서는 장거리 양자암호 전송에 있어서 광섬유 전송 거리에 따른 오류율을 측정한 연구 결과를 소개한다. 특히 외부 환경에 안정된 양방향 양자 암호 전송 기술의 하나인 plug-and-play 방식의 구도에서 전송 거리를 극대화하는 노력에 있어서 가장 문제시되는 Raleigh-backscattering의 효과에 의한 양자비트 전송에서의 오류를 측정하였다. 아울러 이러한 오류를 최소화하면서 70 km 단일모드 광섬유 전송을 구현한 양자통신 결과를 소개하고자 한다.

  • PDF

디스플레이 고색 재현 형광 소재 기술

  • Choe, Seong-U;Kim, Seong-Min;O, Jeong-Rok;Yun, Cheol-Su
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, display technology has been focused in regard with with color reproduction, contrast ratio, image resolution and color bit. Among these technologies, the color reproducibliity of White, Red, Green, and Blue is associated with the TV plaform and is expressed as a major technology. Major TV platforms are divided into three categories since 2015, including LCD-based phosphor coverted LED BLU technology, QD sheet technology using nano-sized quantum dots, and OLED technology. In this paper, we describe the color reproducibility definition and background, luminescent materials with wide color gamut, color reproducibility of TV display performance, and discuss about next luminescent materials.