• Title/Summary/Keyword: Quantization Error

Search Result 296, Processing Time 0.02 seconds

Truncation Error Problem of Error Diffusion Method (오차 확산 방법의 절삭 오차 문제)

  • Jho, Cheung-Woon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.850-856
    • /
    • 2011
  • The error diffusion method is one of the digital halftoning methods that diffuses quantization errors of current processing pixel to neighboring pixels and get a high-quality black-white image. This method has the problematic case which partially increase or decrease summation of diffused errors in the process of diffusing the quantization error. In this paper, we analyze Floyd-Steinberg method, Jarvis-Judice-Ninke method, Stucki method, and Shiau-Fan method as a representative case of error diffusion methods and propose a solution method of this problem.

2-step Phase-shifting Digital Holographic Optical Encryption and Error Analysis

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.244-251
    • /
    • 2011
  • We propose a new 2-step phase-shifting digital holographic optical encryption technique and analyze tolerance error for this cipher system. 2-step phase-shifting digital holograms are acquired by moving the PZT mirror with phase step of 0 or ${\pi}$/2 in the reference beam path of the Mach-Zehnder type interferometer. Digital hologram with the encrypted information is Fourier transform hologram and is recorded on CCD camera with 256 gray-level quantized intensities. The decryption performance of binary bit data and image data is analyzed by considering error factors. One of the most important errors is quantization error in detecting the digital hologram intensity on CCD. The more the number of quantization error pixels and the variation of gray-level increase, the more the number of error bits increases for decryption. Computer experiments show the results to be carried out encryption and decryption with the proposed method and the graph to analyze the tolerance of the quantization error in the system.

Improved Vector Error Diffusion for Reduction of Smear Artifact in the Boundary Regions (경계 영역에서의 색번짐 현상을 줄이기 위한 향상된 벡터 오차 확산법)

  • 이순창;조양호;김윤태;이철희;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.111-120
    • /
    • 2004
  • This paper proposes a vector error diffusion method for smear artifact reduction in the boundary region. This artifact mainly results from a large accumulation of quantization errors. In particular, color bands with a smear artifact, the width of a few pixels appear along the edges. Accordingly, to reduce this artifact, the proposed halftoning process excludes the large accumulated Quantization error by comparing the vector norms and vector angles between the error-corrected vector and eight primary color patches. When the vector norm of the error corrected vector is larger than those of eight primary color patches, the quantization error vector is excluded from the quantization error distribution process. In addition, the quantization error is also excluded when the angle between eight primary color patches and error corrected vector is large. As a result, the proposed method enables a visually pleasing halftone pattern to be generated by all three color separations into account in a device- independent color space and reduces smear artifact in the boundary regions.

Adaptive Quantization Scheme for Multi-Level Cell NAND Flash Memory (멀티 레벨 셀 낸드 플래시 메모리용 적응적 양자화기 설계)

  • Lee, Dong-Hwan;Sung, Wonyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.540-549
    • /
    • 2013
  • An adaptive non-uniform quantization scheme is proposed for soft-decision error correction in NAND flash memory. Even though the conventional maximizing mutual information (MMI) quantizer shows the optimal post-FEC (forward error correction) bit error rate (BER) performance, this quantization scheme demands heavy computational overheads due to the exhaustive search to find the optimal parameter values. The proposed quantization scheme has a simple structure that is constructed by only six parameters, and the optimal values of them are found by maximizing the mutual information between the input and the output symbols. It is demonstrated that the proposed quantization scheme improves the BER performance of soft-decision decoding with only small computational overheads.

Optimal Realization of a State-Space Digital Filter Using Singular Value Decomposition (특이치 분해를 이용한 상태 공간 디지틀 필터의 최적 실현)

  • 문용선;박종안;김재민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.155-165
    • /
    • 1990
  • The problem of quantization errors in digital filter design arises because of the practical necessity due to finite wordlength implementation. These errors are classified into coefficient quantization error and roung off error. In this paper, in order to analyze and reduce these errors, minimum ceefficient quantization realization is directly derived form impulse responese design specification. And using the equivalent transform relation between minimum coefficient quantization error and minimum roundoff error realizations, we synthesize an optimal realization state-space digital filter. This technique is analyzed by the simulation of an approximated 3rd model, which shows that it is superior to direct or cascade state-space digital filter in quantization errors.

  • PDF

The effects of scaling factors and quantization in sensors on free motion of teleoperation system

  • Hwang, Dal-Yeon;Cho, SangKyu;Park, Sanguk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1512-1515
    • /
    • 1997
  • One of the advantages of master-slave teleoperation is scaling concept such as position scaling, force scaling Meanuhile, lots of quantization effects are generated from position and force sensors in the master and slave manipulator. In this paper, to show the output error caused by the quantizaion effects from the position sensor and position scaling factor, simulation is done for free motion without contact in slave side. Transfer functiion model in which the quantization effect is assumed to be a disturbance input to the system is derived. Model shows that Jacobian, scaling factors, and controller affect the output by quantization effects form esnsors. One dof master and slave are used for simulation. In our study, the higher sensor resolution decreases the output error form quantization. Scaling factors can amplify the quantizatiion effects form the sensors in master and slave manipulators.

  • PDF

Error Analysis for Optical Security by means of 4-Step Phase-Shifting Digital Holography

  • Lee, Hyun-Jin;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • We present an optical security method for binary data information by using 4-step phase-shifting digital holography and we analyze tolerance error for the decrypted data. 4-step phase-shifting digital holograms are acquired by moving the PZT mirror with equidistant phase steps of ${\pi}/2$ in the Mach-Zender type interferometer. The digital hologram in this method is a Fourier transform hologram and is quantized with 256 gray level. The decryption performance of the binary data information is analyzed. One of the most important errors is the quantization error in detecting the hologram intensity on CCD. The greater the number of quantization error pixels and the variation of gray level increase, the more the number of error bits increases for decryption. Computer experiments show the results for encryption and decryption with the proposed method and show the graph to analyze the tolerance of the quantization error in the system.

A piecewise affine approximation of sigmoid activation functions in multi-layered perceptrons and a comparison with a quantization scheme (다중계층 퍼셉트론 내 Sigmoid 활성함수의 구간 선형 근사와 양자화 근사와의 비교)

  • 윤병문;신요안
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.56-64
    • /
    • 1998
  • Multi-layered perceptrons that are a nonlinear neural network model, have been widely used for various applications mainly thanks to good function approximation capability for nonlinear fuctions. However, for digital hardware implementation of the multi-layere perceptrons, the quantization scheme using "look-up tables (LUTs)" is commonly employed to handle nonlinear signmoid activation functions in the neworks, and thus requires large amount of storage to prevent unacceptable quantization errors. This paper is concerned with a new effective methodology for digital hardware implementation of multi-layered perceptrons, and proposes a "piecewise affine approximation" method in which input domain is divided into (small number of) sub-intervals and nonlinear sigmoid function is linearly approximated within each sub-interval. Using the proposed method, we develop an expression and an error backpropagation type learning algorithm for a multi-layered perceptron, and compare the performance with the quantization method through Monte Carlo simulations on XOR problems. Simulation results show that, in terms of learning convergece, the proposed method with a small number of sub-intervals significantly outperforms the quantization method with a very large storage requirement. We expect from these results that the proposed method can be utilized in digital system implementation to significantly reduce the storage requirement, quantization error, and learning time of the quantization method.quantization method.

  • PDF

Design of the 2nd order Digital Filter with Minimum Coefficient Quatization Error (최소계수 양자화 오차를 갖는 2차 디지틀 필터의 설계)

  • 문용선;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.5
    • /
    • pp.364-373
    • /
    • 1990
  • When digital filters are implemented on a computer or with spectial purpose hardware, they unavoidably suffer from errors due to finite wordlength implementation. These errors are classified into coefficient quantiz ation error and roundoff error. The synthesizing method for realizations with minimum coefficient quantization error and minimum roundoff error has been studied. In this paper, it is shown that there is an equivalent transform relation between realizations with minimum coefficient quatization error and minimum roundoff error. To show tha validity of this equivalent transform, we derived the 2nd order digital filter with minimum coefficient quantization error from the 2nd order digital filter with minimum roundoff error and proved the efficiency of realization with minimum coefficient quantization error by simulation.

  • PDF

Improved k-means Color Quantization based on Octree

  • Park, Hyun Jun;Kim, Kwang Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we present an color quantization method by complementing the disadvantage of K-means color quantization that is one of the well-known color quantization. We named the proposed method "octree-means" color quantization. K-means color quantization does not use all of the clusters because it initializes the centroid of clusters with random value. The proposed method complements this disadvantage by using the octree color quantization which is fast and uses the distribution of colors in image. We compare the proposed method to six well-known color quantization methods on ten test images to evaluate the performance. The experimental results show 68.29 percent of mean square error(MSE) and processing time increased by 14.34 percent compared with K-means color quantization. Therefore, the proposed method improved the K-means color quantization and perform an effective color quantization.