Improved Vector Error Diffusion for Reduction of Smear Artifact in the Boundary Regions

경계 영역에서의 색번짐 현상을 줄이기 위한 향상된 벡터 오차 확산법

  • 이순창 (경북대학교 전자전기컴퓨터학부) ;
  • 조양호 (경북대학교 전자전기컴퓨터학) ;
  • 김윤태 (경북대학교 전자전기컴퓨터학) ;
  • 이철희 (안동대학교 컴퓨터공학) ;
  • 하영호 (경북대학교 전자전기컴퓨터학부)
  • Published : 2004.05.01

Abstract

This paper proposes a vector error diffusion method for smear artifact reduction in the boundary region. This artifact mainly results from a large accumulation of quantization errors. In particular, color bands with a smear artifact, the width of a few pixels appear along the edges. Accordingly, to reduce this artifact, the proposed halftoning process excludes the large accumulated Quantization error by comparing the vector norms and vector angles between the error-corrected vector and eight primary color patches. When the vector norm of the error corrected vector is larger than those of eight primary color patches, the quantization error vector is excluded from the quantization error distribution process. In addition, the quantization error is also excluded when the angle between eight primary color patches and error corrected vector is large. As a result, the proposed method enables a visually pleasing halftone pattern to be generated by all three color separations into account in a device- independent color space and reduces smear artifact in the boundary regions.

본 논문에서는 경계 영역에서의 색번짐 현상을 줄이기 위한 벡터 오차 확산법을 제안한다. 이러한 결점은 양자화 과정에서 생기는 큰 누적된 양자화 오차의 확산으로 인해서 발성하게 되며, 특히 색이 변하게 되는 영상의 경계 영역에서 특정 칼라띠를 형성하게된다. 따라서 이러한 결점을 줄이기 위해서 세안한 벡터 오차 확산 방법은 오차를 확산 받은 벡터와 8개의 기준색과의 벡터 크기 및 벡터 각을 비교함으로써, 큰 양자화 오차를 전체 중간조 처리 과정에서 제외한다. 먼저 오차가 보정된 벡터의 크기가 8개의 기준색보다 클 경우 양자화 오차를 확산시키지 않게 되며, 벡터 각이 클 경우에도 양자화 오차를 확산 시키지 않는다. 그러므로 제안한 방법은 각 채널의 상관관계를 고려한 벡터 칼라 공간상에서 중간조 처리를 함으로써 시각적으로 색이 향상된 결과를 얻을 수 있었고, 경계 부분에서의 색번짐 현상도 줄일 수 있었다.

Keywords

References

  1. B. E. Bayer, 'An optimum method for two-level rendition of continuous-tone pictures,' IEEE International Conference on Communications, vol. 1, pp. 11-15, 1976
  2. R. Ulicheney, Digital Halftoning, The MIT Press, 1993
  3. H. R. Kang, Digital Color Halftoning, The SPIE Optical Engineering Press, 1999
  4. T. Mitsa and K. J. Parker, 'Digital halftoning technique using a blue-noise mask,' Journal of Optical Society of America A, vol. 9, no. 11, pp. 1920-1929, Nov. 1992
  5. Q. Yu and K. J. Parker, 'Stochastic screen halftoning for electronic imaging devices,' Journal of Visual Communication and Representation, vol. 8, no. 4, pp. 423-440, Dec. 1997 https://doi.org/10.1006/jvci.1997.0363
  6. Floyd R. and Steinberg L., 'An adaptive algorithm for spatial gray scale,' SID 1975 Symp, Dig. Tech. Papers, pp, 36-37, 1975
  7. K. T. Knox, 'Evolution of error diffusion,' SPIE Conference On Device-Independent Color Imaging, vol. 3648, pp. 448-458, Jan. 1999
  8. M. Wang and K. J. Parker, 'Properties of jointly-blue noise masks and applications to color halftoning,' Journal of Imaging Science and Technology, vol. 44, no. 4, pp. 360-370, July/Aug. 2000
  9. Y. S. Kwon, Y. T. Kim, H. K Lee, and Y. H. Ha, 'Modified jointly-blue noise masks approach using S-CIELAB color difference,' Ninth Color Imaging Conference, Color Science and Engineering, Scottsdale, U.S.A., pp. 194-198, Nov.2001
  10. H. Haneish, T. Suzuki, N. Shimonyama, and Y. Miyake, 'Color digital halftoning taking colorimetric color reproduction into account,' Journal of Electronic Imaging, vol. 5, no. 1, pp. 97-106, Jan. 1996 https://doi.org/10.1117/12.227441
  11. Z. Fan, 'Boundary artifacts reduction in vector error diffusion,' SPIE Conference on Device-Independent Color Imaging, vol. 3648, pp. 480-484, Jan. 1999 https://doi.org/10.1117/12.334592
  12. M. Kouzaki, T. Itoh, T. Kawaguchi, N. Tsumura, H. Haneishi, and Y. Miyake, 'Evaluation of digital halftone image by vector error diffusion,' Proc. SPIE, 3648, pp. 470-479, Jan. 1999 https://doi.org/10.1117/12.334591
  13. C. H. Lee, W. H. Choi, E. J. Lee, and Y. H. Ha, ''Digital halftoning based on color correction using neural network with uniform color samples and vector error diffusion,' EI2000(Electronic Imaging), SPIE, San Jose, U.S.A., vol. 3963, pp. 415-422, Jan. 2000 https://doi.org/10.1117/12.373423