• Title/Summary/Keyword: Quantitative and comparison evaluation parameters

Search Result 24, Processing Time 0.029 seconds

Research on the weld quality estimation system using fuzzy expert system (퍼지 전문가 시스템을 활용한 용접 품질 예측 시스템에 관한 연구)

  • 박주용;강병윤;박현철
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1997
  • Weld bead shape is an important measure for evaluation of weld quality. Many welding parameters have influence on the weld bead shape. The quantitative relationship between welding parameters and bead shape, however, is not determined yet because of their high complexity and many unknown factors. Fuzzy expert system is an advanced expert system which uses fuzzy rules and approximate reasoning. It is a vert useful tool for welding technology because is can process rationally the uncertain and inexact information such as the welding information. In this paper, the empirical and the qualitative relationship between welding parameters and bead shape are analyzed and represented by fuzzy rules. They are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. Weld bead shape is estimated from the welding parameters using fuzzy expert system. The result of comparison between measured values of weld bead by welding experiments and the estimates values by fuzzy expert system shows a good consistancy.

  • PDF

Consideration for evaluation patterns of normalized RMR parameters (정규화한 RMR 변수들의 평가 경향에 대한 고찰)

  • Lee, Seong-Min;Lee, Yeon-Hee;Kim, Sun-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.23-35
    • /
    • 2012
  • Due to the convenience, RMR has been widely applied in civil engineering works such as tunnel, slope, and so on. Many researchers have studied to suggest more simple and trustable RMR by modifying its parameters. However, those researches have just focused on looking for easy modified-RMRs by reducing number of parameters using various statistical analyses. Therefore, this research studied questions of modified-RMRs and gaps between RMR and its parameters. Approximately 2,000 parameters of 400 RMRs from various tunnel sites were normalized respectively and compared with one another to study their relations and divergences. The comparison results showed that there were common patterns among RMR and parameters. Data of uniaxial compressive strength and RQD, qualitative parameters, were located in upper side of RMR line. Discontinuity condition and ground water, quantitative oriented parameters, were opposite to them. It means if both qualitative and quantitative parameters can be properly combined then it can be easy to make simple and easy modified-RMRs without using difficult statistics. This results also show that the majority of field engineers used to estimate RMR conservatively when they did quantitative oriented parameters.

Basic ]Requirements for Spectrum Analysis of Electroencephalographic Effects of Central Acting Drugs (중추성 작용 약물의 뇌파 효과의 정량화를 위한 스펙트럼 분석에 필요한 기본적 조건의 검토)

  • 임선희;권지숙;김기민;박상진;정성훈;이만기
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • We intended to show some basic requirements for spectrum analysis of electroencephalogram (EEG) by visualizing the differences of the results according to different values of some parameters for analysis. Spectrum analysis is the most popular technique applied for the quantitative analysis of the electroen- cephalographic signals. Each step from signal acquisition through spectrum analysis to presentation of parameters was examined with providing some different values of parameters. The steps are:(1) signal acquisition; (2) spectrum analysis; (3) parameter extractions; and (4) presentation of results. In the step of signal acquisition, filtering and amplification of signal should be considered and sampling rate for analog-to-digital conversion is two-time faster than highest frequency component of signal. For the spectrum analysis, the length of signal or epoch size transformed to a function on frequency domain by courier transform is important. Win dowing method applied for the pre-processing before the analysis should be considered for reducing leakage problem. In the step of parameter extraction, data reduction has to be considered so that statistical comparison can be used in appropriate number of parameters. Generally, the log of power of all bands is derived from the spectrum. For good visualization and quantitative evaluation of time course of the parameters are presented in chronospectrogram.

  • PDF

Color Texture Analysis as a Tool for Quantitative Evaluation of Radiation-Induced Skin Injuries

  • Sung Young Lee;Jin Ho Kim;Ji Hyun Chang;Jong Min Park;Chang Heon Choi;Jung-in Kim;So-Yeon Park
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.144-152
    • /
    • 2023
  • Background: Color texture analysis was applied as a tool for quantitative evaluation of radiation-induced skin injuries. Materials and Methods: We prospectively selected 20 breast cancer patients who underwent whole-breast radiotherapy after breast-conserving surgery. Color images of skin surfaces for irradiated breasts were obtained by using a mobile skin analyzer. The first skin measurement was performed before the first fraction of radiotherapy, and the subsequent measurement was conducted approximately 10 days after the completion of the entire series of radiotherapy sessions. For comparison, color images of the skin surface for the unirradiated breasts were measured similarly. For each color image, six co-occurrence matrices (red-green [RG], red-blue [RB], and green-blue [GB] from color channels, red [R], green [G], blue [B] from gray channels) can be generated. Four textural features (contrast, correlation, energy, and homogeneity) were calculated for each co-occurrence matrix. Finally, several statistical analyses were used to investigate the performance of the color textural parameters to objectively evaluate the radiation-induced skin damage. Results and Discussion: For the R channel from the gray channel, the differences in the values between the irradiated and unirradiated skin were larger than those of the G and B channels. In addition, for the RG and RB channels, where R was considered in the color channel, the differences were larger than those in the GB channel. When comparing the relative values between gray and color channels, the 'contrast' values for the RG and RB channels were approximately two times greater than those for the R channel for irradiated skin. In contrast, there were no noticeable differences for unirradiated skin. Conclusion: The utilization of color texture analysis has shown promising results in evaluating the severity of skin damage caused by radiation. All textural parameters of the RG and RB co-occurrence matrices could be potential indicators of the extent of skin damage caused by radiation.

A Systematic Review of Trends for Image Quality Improvement in Light Microscopy (광학 현미경 영상 화질개선의 추세에 관한 체계적 고찰)

  • Kyuseok Kim;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • Image noise reduction algorithm performs important functions in light microscopy. This study aims to systematically review the research trend of types and performance evaluation methods of noise reduction algorithm in light microscopic images. A systematic literature search of three databases of publications from January 1985 to May 2020 was conducted; of the 139 publications reviewed, 16 were included in this study. For each research result, the subjects were categorized into four major frameworks-1. noise reduction method, 2. imaging technique, 3. imaging type, and 4. evaluation method-and analyzed. Since 2003, related studies have been conducted and published, and the number of papers has increased over the years and begun to decrease since 2016. The most commonly used method of noise reduction algorithm for light microscopy images was wavelet-transform-based technology, which was mostly applied in basic systems. In addition, research on the real experimental image was performed more actively than on the simulation condition, with the main case being to use the comparison parameter as an evaluation method. This systematic review is expected to be extremely useful in the future method of numerically analyzing the noise reduction efficiency of light microscopy images.

Comparison of Impedance Parameters and Occupational Therapy Evaluation in the Paretic and Non-paretic Upper Extremity of Hemiplegic Stroke Patients

  • Yoo, Chan-Uk;Kim, Jaehyung;Hwang, Youngjun;Kim, Gunho;Shin, Yong-Il;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1980-1991
    • /
    • 2017
  • Many stroke patients undergoing rehabilitation therapy require a quantitative indicator for the evaluation of body function in paretic and non-paretic regions. In this study, the impedance parameters were acquired to assess the physical status in the upper extremity of thirty six stroke patients with hemiplegia caused by cerebral hemorrhage (10 patients) and cerebral infarction (26 patients), using bioelectrical impedance. Prediction marker (PM), phase angle (PA), PM/PA, and resistance (R) versus reactance ($X_c$) were utilized to evaluate the functional status of the paretic and non-paretic regions. In addition, the hand grip strength (HGS) and the pinch strength (lateral, palmer, tip) were measured on the upper extremity of hemiplegic stroke patients. PM was distributed in inversely proportional to HGS, but PA was distributed in proportional to HGS. However, there were a number of patients with HGS of 0, regardless of the impedance parameters (PM, PA, R vs. $X_c$). Paretic and non-paretic status in upper extremity of these patients could not be analyzed using impedance parameters. At the rehabilitation therapist's instructions, they were unable to move the hand and fingers of the paretic upper extremity by cranial nerve damage, motor nerve damage, and severe cognitive decline.

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.

The Study on Usefulness of the Standardized Information of Nuclear Medicine Scan in Function Evaluation of the Salivary Glands (침샘의 기능평가에서 핵의학 검사의 표준화된 정보제공의 유용성 연구)

  • Pyo, Sungjai;Han, Jaebok;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.357-362
    • /
    • 2015
  • This study was to evaluate the usefulness through the comparison of patients group and healthy control group by acquiring a variety of functional parameters index from time-activity curves of salivary gland scan using 99mTc-pertechnetate. From December 2014 to February 2015, had the targets of 30 patients with dry mouth and 10 people in healthy control group underwent the salivary gland scan. After intravenous injection of 370 MBq of 99mTc-pertechnetate, Vitamin C powder stimulation was administerd orally at 20 min and then 10 minutes were taken scan. The method of quantitative analysis was as follows, the time-activity curve was drawn after the parotid gland and submandible gland were prescribed as a region of interest, a variety of function parameters index was obtained in each position of the curve, and the patients group and the control group were compared. As for the methods applied in comparison and measurement, uptake ratio (UR), time at maximum counts (Tmax), time at minimum counts (Tmin), maximum accumulation (MA), accumulation velocity, maximum secretion (MS), maximum stimulation secretion (MSS), and secretion velocity (SV) were used. In the comparison of functional parameters index of patient group and normal group, the healthy normal group showed significant difference compared to the patient group in all indices except for the minimum radioactivity time (Tmin), and also in terms of variation over time the normal group showed significant difference compared to the patient group (p<0.05). Consequently, it was considered that the quantitative analysis that used a variety of function parameters index would be useful for evaluating the function of the salivary glands of the patients with dry mouth as an objective and standardized information.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

Introducing Strategy of Cool Roofs based on Comparative Evaluation of Foreign Cases (해외 사례분석을 통한 Cool Roof의 도입 방안)

  • Choi, Jin-Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.591-605
    • /
    • 2010
  • Cool roofs are currently being emerged as one of important mechanism to save energy in relation to the building. This paper reviews worldwide experiences (USA, Japan and EU etc) for the potential benefits cool roofs offer in relation to building energy saving for comparison purposes. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate because of similarity in terms of HDD (Heating Degree Day) and CDD (Cooling Degree Day) as those countries reviewed. Such a comparative study highlights that the type of measurements performed and the quantitative parameters reported from the countries should be standardized in Korean context in order to implement further comparable experiments for scientifically sound investigations. It is anticipated that this research output could be used as a valuable reference in implementing a Nation-wide cool roofing strategy in the central and local governments since a suitable technical, more objective direction has been proposed based on the measured, fully quantitative performance of the involved components of a cool roof system in the global context. From this critical review, a very important step has been made concerning the practicality of cool roof in Korean context. Ultimately, the suggestion in this paper will greatly contribute to opening new possibilities for introducing cool roof in this country, proposed as an initial aim of this paper.