• Title/Summary/Keyword: Quantitative Technology Analysis

Search Result 2,329, Processing Time 0.032 seconds

Quantitative and Pattern Recognition Analyses for the Quality Evaluationof Herba Epimedii by HPLC

  • Nurul Islam, M.;Lee, Sang-Kyu;Jeong, Seo-Young;Kim, Dong-Hyun;Jin, Chang-Bae;Yoo, Hye-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.137-144
    • /
    • 2009
  • In this study, quantitative and pattern recognition analyses for the quality evaluation of Herba Epimedii using HPLC was developed. For quantitative analysis, five major bioactive constituents, hyperin, epimedin A, epimedin B, epimedin C, and icariin were determined. Analysis was carried out on Capcell pak $C_{18}$ column ($250{\time}4.6$ mm, 5 ${\mu}m$) with a mobile phase of mixture of acetonitrile and 0.1% formic acid, using UV detection at 270 nm. The linear behavior was observed over the investigated concentration range (2-50 ${\mu}g/mL;\;r_2\;>$ 0.99) for all analytes. The intraand inter-day precisions were lower than 4.3% (as a relative standard deviation, RSD) and accuracies between 95.1% and 104.4%. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of one reference sample. The RSD of intra- and inter-day variation of relative retention time (RRT) and relative peak area (RPA) of the 12 selected common peaks were below 0.8% and 4.7%, respectively. The developed methods were applied to analysis of twenty Herba Epimedii extract samples. Contents of hyperin, epimedin A, epimedin B, epimedin C, and icariin were calculated to be 0$\sim$0.79, 0.69$\sim$1.91, 0.93$\sim$9.58, 0.65$\sim$3.05, and 2.43$\sim$11.8 mg/g dried plant. Principal component analysis (PCA) showed that most samples were clustered together with the reference samples but several apart from the main cluster in the PC score plot, indicating differences in overall chemical composition between two clusters. The present study suggests that quantitative determination of marker compounds combined with pattern-recognition method can provide a comprehensive approach for the quality assessment of herbal medicines.

A Case Study on Qualitative Efficiency of National R&D Projects on Technical Performances : Focused on Livestock Quarantine (국가 R&D 기술적 성과의 질적 효율성 분석에 관한 사례 연구 : 가축방역 분야를 중심으로)

  • Kim, Kyung-Soo;Cho, Nam-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.8-15
    • /
    • 2019
  • Korea's R&D investment has significantly increased in recent years and the quantitative outputs such as number of papers and patents have also increased with the investment. However, the quality of R&D outputs has not been fully addressed. In particular, quality of technical performance, such as the quality of patents, has attracted little attention. In this paper, a Data Envelopment Analysis (DEA) method was used to construct models for efficiency analysis of R&D investment, focused on quality of technical performance. Indices were proposed to analyze the quantitative and qualitative efficiencies of R&D investment. In order to effectively analyze R&D efficiencies, the measurement units of the input and output variables were standardized. Based on cases of livestock quarantine R&D projects of Korea, the quantitative and qualitative efficiencies of national R&D projects were analyzed and factors that would influence R&D efficiencies were identified. This paper suggests that both quantitative and qualitative efficiencies should be considered when measuring R&D efficiency. Also, it is recommended to carefully consider the characteristics of R&D projects during project selection stage.

Quantitative Analysis of Zn-Fe Electroplated Steel Sheet by Glow Discharge Spectrometry (Glow Discharge 방출분광법에 의한 Zn-Fe 전기도금강판의 정량분석)

  • So, Jai-Chun;Chung, Sung-Wook;Lee, Do-Hyung
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 1992
  • The quantitative analysis experiment of Zn-Fe electroplated steel was carried out by means of glow discharge spectrometry. The experimental results of chemical composition and coating weight of the Zn-Fe layer were compared with those obtained by the wet chemical analysis method. It has been found that those results obtained by two different methods agreed well with each other.

  • PDF

Studies on Determination of Aliphatic Carbamates -Quantitative Analysis of Carisoprodol-

  • Kim, Jeoung-Sook;Kim, Bak-Kwang
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.3
    • /
    • pp.151-159
    • /
    • 1985
  • For the determination of aliphatic carbamates, the quantitative analysis of carisoprodol was investigated by gab chromatography (GC) and spectrophotometry. All the methods studied were found to be very quantitative. The minimum experimental amounts of GC method, spectrophotometric method I and II were approximately $10^{-9},\;10^{-5}$ and $10^{-8}$ mole, respectively. The obtained results showed that GC method I was much more sensitive and rapid than spectrophotometric method II.

  • PDF

The Quantitative Risk Analysis in Rail Transport of Propylene (프로필렌의 철도 수송에 따른 정량적 위험성 평가)

  • Lee, Jae-Hean;Song, Dong-Woo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.38-44
    • /
    • 2010
  • This treatise analyzed the risk of propylene transported by railroad through quantitative analysis. As a result of survey on propylene transportation route, Iksan station, Suncheon station and Jeonju station were selected as object regions those were expected to have high accident risks. This treatise deduced the scenario of accident and the occurrence rate in accordance with the type of accident possibly to be happening during propylene transportation through ETA( Event Tree Analysis), and expressed the level of personal, social risks after calculating the level of demage influencing over surroundings based on the evaluation for the expected accident damage through PHAST 6.53.

A study on the quantitative risk grade assessment of initial mass production for weapon systems (초도양산 군수품에 대한 정량적 위험등급평가 방안 연구)

  • Jung, Yeongtak;Ham, Younghoon;Roh, Taegoo;Ahn, Manki;Ko, Kyungwa
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.441-452
    • /
    • 2018
  • Purpose: The purpose of this paper is to study quantitative risk grade assessment for objective government quality assurance activities based on risk management in initial mass production for weapon systems. Methods: The Defense quality management regulations and foreign risk assessment documents are referred to analyze problems performing quality assurance actives. The failure rate data, maintainability and cost of products have been studied to quantify the risk Likelihood and impact. The analyzed data were classified as risk grade assessment through K-means Cluster Analysis method. Results: Results show that a proposed method can objectively evaluate risk grade. The analyzed results are clustered into three levels such as high, middle and low. Two products are allocated high, eleven low and seven middle. Conclusion: In this paper, quantitative risk grade assessment methods were presented by analyzing risk ratings based on objective data. The findings showed that the methods would be effective for initial mass production for weapon systems.

Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review

  • Min, Sea-Cheol;Choi, Young-Jin
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.279-293
    • /
    • 2009
  • Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.

A Quantitative Model of System-Man Interaction Based on Discrete Function Theory

  • Kim, Man-Cheol;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.430-449
    • /
    • 2004
  • A quantitative model for a control system that integrates human operators, systems, and their interactions is developed based on discrete functions. After identifying the major entities and the key factors that are important to each entity in the control system, a quantitative analysis to estimate the recovery failure probability from an abnormal state is performed. A numerical analysis based on assumed values of related variables shows that this model produces reasonable results. The concept of 'relative sensitivity' is introduced to identify the major factors affecting the reliability of the control system. The analysis shows that the hardware factor and the design factor of the instrumentation system have the highest relative sensitivities in this model. T도 probability of human operators performing incorrect actions, along with factors related to human operators, are also found to have high relative sensitivities. This model is applied to an analysis of the TMI-2 nuclear power plant accident and systematically explains how the accident took place.

Standardization for Quantitative Analysis of Aromatic Hydrocarbon in Oil Spill Dispersant (유처리제의 방향족 탄화수소 정량방법에 대한 표준화)

  • Cho, Jong-Hoi;Lim, Yoon-Taek;Kim, Woo-Seok;Yun, Young-Ja;Kim, Shin-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.302-310
    • /
    • 2002
  • Demand for organic analysis increase as industries are growing and many products are spreaded in the daily life. One of many products is oil spill dispersant. It was used for oil accident in the ocean. When oil spill dispersant spread at the ocean, the petroleum in the ocean is dispersed. The oil spill dispersant is made of non ionic surfactant and petroleum oil. The non ionic surfactant disperse petroleum from oil accident. The other part is petroleum oil which has aromatic hydrocarbon. Because the aromatic hydrocarbon is cancerogenic material, it directly injure animals in the ocean. This cause the second pollution in the human body. Many oil accidents still are controlled by oil spill dispersant. Therefore quality control of the oil spill dispersant become important and this also demand for the exact quantitative analysis of aromatic hydrocarbon. Hereupon the first we develop separate petroleum oil from surfactant. The second standardize analytical method of aromatic hydrocarbon in the separated petroleum oil.

Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles (사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석)

  • Yi, Soo-Jeong;Choi, Doo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.118-127
    • /
    • 2020
  • The paper introduces trends and methodological challenges of quantitative Korean text analysis by using the case studies of academic and news media articles on "migration" and "immigration" within the periods of 2017-2019. The quantitative text analysis based on natural language processing technology (NLP) and this became an essential tool for social science. It is a part of data science that converts documents into structured data and performs hypothesis discovery and verification as the data and visualize data. Furthermore, we examed the commonly applied social scientific statistical models of quantitative text analysis by using Natural Language Processing (NLP) with R programming and Quanteda.