• 제목/요약/키워드: Quantitative Feedback

검색결과 177건 처리시간 0.029초

전력계통의 저주파 진동 억제를 위한 강인하 QFT 제어기 설계 (Design of Robust QFT Controller to Damp Low Frequency Oscillations of Power System)

  • 정형환;이정필;김상효;정문규;안병철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.833-845
    • /
    • 2001
  • Quantitative Feedback Theory(QFT) has been used to design a robust power system stabilizer(PSS) to improve transient and dynamic stabilities of a power system. This design technique is basically accomplished in frequency domain. The most important feature of QFT is that it is able to deal with the design problem of complicated uncertain plants. A basic idea in QFT design is the translation of closed-loop frequency-domain specifications into Nichols chart domains specifying the allowable range of the nominal open-loop response and then to design a controller by using the gain-phase loop shaping technique. This paper introduces a new algorithm to compute QFT bounds more efficiently. The propose QFT design method ensures a satisfactory performance of the PSS under a wide range of power system operating conditions.

  • PDF

TLS를 이용한 QFT의 이득-위상 루프형성법 (A Gain-Phase Loop Shaping Method of QFT using TLS)

  • 김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.94-98
    • /
    • 2002
  • QFT(Quantitative Feedback Theory) is a very practical design technique that emphasizes the use of feedback for achieving the desired system performance tolerances in despite of plant uncertainty and disturbance. The gain-phase loop shaping procedure of QFT is employed to design controller, until the bounds at desired frequencies are satisfied. This paper presents a transfer function synthesis using TLS(Total Least Squares) and offers a loop shaping method with the suggested technique. An example illustrates a feasibility of the presented algorithm.

QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구 (Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory)

  • 박인석;홍승우;신재욱;선우명호
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.

플랜트 파라미터의 불확실성을 포함한 4-회전익(Quad-Rotor) 비행체의 정량적 궤환 이론을 이용한 자세 제어 (Attitude Control using Quantitative Feedback Theory of a Quad-Rotor Vehicle with Plant Parametric Uncertainty)

  • 이병석;허문범;이준화
    • 한국항공우주학회지
    • /
    • 제42권3호
    • /
    • pp.243-253
    • /
    • 2014
  • 본 논문은 플랜트 파라미터의 불확실성에도 불구하고 강인성을 보장하는 정량적 궤환 이론에 대해 다루고 있다. 정량적 궤환 이론은 플랜트의 파라미터와 외란의 불확실성에 대해 주파수 영역에서 설계 사양의 강인성을 보장한다. 정량적 궤환 이론을 이용하기 위해 선정한 플랜트는 기동성이 뛰어나며 헬리콥터와 같이 수직 이착륙이 가능한 4-회전익 비행체를 이용하였으며, 4개의 블레이드를 구동하는 모터의 파라미터 불확실성을 설정하여 요구사양에 맞는 자세 제어가 가능함을 실험하였다. 또한, 자세 제어에는 4-회전익 비행체의 파라미터 변동 범위와 동작 범위를 고려한 전필터를 사용하였다. 이를 위해 MATLAB에서 정량적 궤환 이론에 의해 제어기를 설계할 수 있는 QFT control toolbox인 QFTCT를 사용하여 각 설계 단계에 대해 소개하고 있다.

만성편마비 환자에게 반복과제와 피드백 과제의 운동프로그램이 하지운동기능과 낙상효능감에 미치는 효과 (Comparison of effects of Feedback vs Repeative task training on lower extremity function in patients with chronic hemiplegia)

  • 안명환;안창식
    • 대한물리의학회지
    • /
    • 제6권1호
    • /
    • pp.9-17
    • /
    • 2011
  • Purpose : The purpose of this study was to compare the effects of performing feedback vs repeative tasks on lower extremity motor function and falls efficacy in chronic hemiplegic patients. Methods : 40 hemiplegic patients took part in this study. The average age of the feedback-task group was 68.45 years and 68.20 in the repeative-task group. All subjects participated in the study for 8 weeks, doing exercises 3 per day per week. All participants were assessed by using the Berg balance scale (BBS), the lower-extremity subscale of the Fugel-Meyer assessment of sensorimotor impairment (FMLE), and the falls efficacy scale (FES). The data were analyzed using a paired t-test. Results : After 8 weeks of exercise training, the results of this study were: the BBS and FMLE of hemiplegic patients showed a feedback-task and repeative-task groups (p<0.05). The FES of hemiplegic patients also showed a significant difference between the quantitative-task and qualitative-task groups (p<0.05). Conclusion : We present findings suggesting that chronic hemiplegic patients could improve their standing balance ability better through a feedback-task exercise program, as opposed to a repeative-task exercise program.

거주자 참여형 에너지 절감 활동 효과 연구 -S대학 기숙사 거주 학생을 대상으로 한 에너지피드백 활동을 중심으로- (A Study on the Effects of Resident Participation in Energy Saving Activities)

  • 정혜진;송해
    • 한국기후변화학회지
    • /
    • 제9권3호
    • /
    • pp.253-261
    • /
    • 2018
  • As user-involved energy saving activities have become important in recent years, many forms of energy feedback experiments have been conducted. We conducted a study to determine if energy feedback activities affect energy saving for students living in dormitories at a university in Seoul. In particular, smart plugs were used for efficient research and quantitative performance measurements, and the extent of the impact of competition and rewards on participant energy saving behavior was further analyzed. The main findings of this study are as follows. First, the power usage of groups using smart plugs was lower than that of those without them. Second, energy feedback delivered to smart plug users did not have a significant impact on reduction of electric power consumption. Third, competition and compensation strategies had additional effects in reducing power usage for smart plug users. As a result, methods to deliver energy feedback more effectively as ICT technologies develop and efficient energy activities using IoT technologies can be expected to spread widely in the future.

Implementing Balanced Scorecard with System Dynamics Approach

  • Yoon, Joseph Y. K.
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.330-336
    • /
    • 2000
  • This paper discusses the potential of system dynamics modelling to support balanced scorecard. The balanced scorecard is a conceptual framework for translating an organisation's strategy into a set of performance indicators. These performance indicators are distributed across the 'classic'model's four perspective: Customers, Internal Business Processes, Financial, and Learning and Growth. This balanced scorecard, whilst having significant strength, suffers from the limitation of all performance indicator systems, namely that the interrelationships between indicators are overlooked and there is no way of taking into account the impact of delayed feedback which flows from introduction of new policy and legislative changes. System Dynamics is a methodology for understanding complex problems where there is dynamic behaviour and where feedback impacts significantly on system outcomes. System dynamics provides a rigorous basis for qualitative testing of the effects of performance indicators in complex environments such as health or social security. This can be supplemented with quantitative system dynamics simulation tools that further test the validity of indicators and the business rules implicit in them. System dynamics modelling has an important role to play in extending feedback cycle in performance measurements to a full systems approach.

  • PDF

출력 미분값의 추정에 의한 선형 시불변 시스템의 로버스트 출력 궤환 제어 (Robust output feedback control of LTI system using estimated output derivatives)

  • Lee, Gun-Bok
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.273-282
    • /
    • 1996
  • This work is conceded with the estimation of output derivatives and their use for the design of robust controller for linear systems with system uncertainties due to modeling errors and disturbances. It is assumed that a nominal transfer function model and quantitative bounds for system uncertainties and known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted through restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Control)type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Migration of Radiative Gas Giants with GIZMO

  • Yang, Seung-Won;Kim, Woong-Tae
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.47.1-47.1
    • /
    • 2019
  • A gas giant formed in a massive protoplanetary disk via gravitational instability migrates inward due to its gravitational interaction with the disk. Planet migration occurs in various ways depending on the disk structure and internal processes, but previous studies only considered quantitative radiative feedback resulting from mass accretion onto the planet. Allowing for accretion feedback, we perform three-dimensional hydrodynamic simulations with GIZMO to investigate orbital evolution of giant planets in a protoplanetary subject to -cooling. This work shows a planet gains mass due to accretion and gradually opens a gap as it moves inward. The migration in the end halts when the planet clears the gas around its orbit. A more massive planet grows its mass faster and migrates more rapidly, stalling at an orbit farther away from the protostar. Models with a cold disk readily construct a circumplanetary disk and result in high mass growth of the planet. Accretion feedback, in general, reduces the rate of the planet growth and delays migration. We discuss our results with GIZMO in comparison with the previous results with different codes.

  • PDF