• 제목/요약/키워드: Quantification Method

검색결과 1,496건 처리시간 0.03초

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of ε-Acetamidocaproic Acid in Rat Plasma

  • Kim, Tae Hyun;Choi, Yong Seok;Choi, Young Hee;Kim, Yoon Gyoon
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.203-209
    • /
    • 2013
  • A simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of ${\varepsilon}$-acetamidocaproic acid (AACA), the primary metabolite of zinc acexamate (ZAC), in rat plasma by using normetanephrine as an internal standard. Sample preparation involved protein precipitation using methanol. Separation was achieved on a Gemini-NX $C_{18}$ column ($150mm{\times}2.0mm$, i.d., 3 ${\mu}m$ particle size) using a mixture of 0.1% formic acid-water : acetonitrile (80 : 20, v/v) as the mobile phase at a flow rate of 200 ${\mu}l/min$. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.0 min, and the calibration curves of AACA were linear over the concentration range of 20~5000 ng/ml in rat plasma. The coefficient of variation and relative error at four QC levels were ranged from 1.0% to 5.8% and from -8.4% to 6.6%, respectively. The present method was successfully applied for estimating the pharmacokinetic parameters of AACA following intravenous or oral administration of ZAC to rats.

HPLC-PDA를 이용한 정향(Eugenia caryophyllata) 중의 eugenol 분석법 확립 및 검증 (Determination of eugenol in Eugenia caryophyllata by high-performance Liquid chromatography with photodiode array detection and method validation)

  • 윤형준;윤소미;이명헌;손성완
    • 대한수의학회지
    • /
    • 제48권1호
    • /
    • pp.9-16
    • /
    • 2008
  • A method for the quantification of eugenol in the medicinal herb Clove was developed and validated. For preparation of sample solutions clove was dried at $60^{\circ}C$ for 2h and ground by mixer and extracted with 95% ethanol for shaking extraction. The elutes were analyzed by HPLC system included a reversed phase column, a isocratic mobile phase of 60% methanol and PDA detector set at 280 nm. Calibration graphs were linear with very good correlation coefficients ($r^2>0.9999$) from $0.0125~1{\mu}g/ml$. The limit of detection per sample injection ($20{\mu}l$) was $0.81ng/{\mu}l$ and limit of quantification was $2.47ng/{\mu}l$. The method showed good intra-day precision (%RSD 0.08 ~ 0.27%) and inter-day precision (%RSD 0.32 ~ 1.19%).

MMORPG 기반 게임의 몰입에 대한 정량적 분석 방법 (Quantitative Analysis of Flow in MMORPG Games)

  • 남병철;배기태
    • 한국게임학회 논문지
    • /
    • 제11권3호
    • /
    • pp.73-84
    • /
    • 2011
  • 한국의 온라인 게임 시장은 전체 게임 시장의 56.4%를 차지한다. 그 중 MMORPG류의 게임은 온라인 게임시장의 45.27%의 큰 비중을 차지하고 있다. 그런데 대부분의 MMORPG 게임들은 기획과 개발과정에서 일반화된 기준이나 원칙이 아닌 특정 기획자의 주관적 판단에 거의 절대적으로 의존하고 있다. 이런 이유로 신작게임들 중 다수는 시장에서 인정받는 대작 게임과의 차별성이나 창의성을 찾아보기 어렵고 모방작이라는 오해를 받기 쉽다. 본 논문에서는 이런 문제점을 해결하기 위해 특히 게임 몰입 부분에 대한 공통적인 정보 제공 및 정량적 분석 방법을 제안한다. 또한 성공적인 MMORPG 게임들의 몰입에 대한 분석을 통해 제안한 방법이 게임 개발 시 효과적인 가이드가 될 수 있음을 입증해 보인다.

Development of simulation-based testing environment for safety-critical software

  • Lee, Sang Hun;Lee, Seung Jun;Park, Jinkyun;Lee, Eun-chan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.570-581
    • /
    • 2018
  • Recently, a software program has been used in nuclear power plants (NPPs) to digitalize many instrumentation and control systems. To guarantee NPP safety, the reliability of the software used in safetycritical instrumentation and control systems must be quantified and verified with proper test cases and test environment. In this study, a software testing method using a simulation-based software test bed is proposed. The test bed is developed by emulating the microprocessor architecture of the programmable logic controller used in NPP safety-critical applications and capturing its behavior at each machine instruction. The effectiveness of the proposed method is demonstrated via a case study. To represent the possible states of software input and the internal variables that contribute to generating a dedicated safety signal, the software test cases are developed in consideration of the digital characteristics of the target system and the plant dynamics. The method provides a practical way to conduct exhaustive software testing, which can prove the software to be error free and minimize the uncertainty in software reliability quantification. Compared with existing testing methods, it can effectively reduce the software testing effort by emulating the programmable logic controller behavior at the machine level.

Exploring the Attractive Factors of App Icons

  • Ho, Chun-Heng;Hou, Kai-Chun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.2251-2270
    • /
    • 2015
  • More than 1 billion mobile apps (smartphone applications) have been released worldwide. Competition among developers of apps that are available in app stores has intensified because of increasing demand. App icons with an appealing design can instantly increase attention. Miryoku Engineering methods were used and combined with the Kansei interface model to examine the relationship between attractive icons and users. The evaluation grid method (EGM) is a qualitative method that was used to evaluate the icons, and Quantification Theory Type I is a quantitative method that was used to analyze the influence of design elements in icons. Eight attractive factors of app icons were determined using EGM, and six specific factors were identified using questionnaires. The quantitative results indicated that user cognition and emotion were influenced by the various design elements. The impact on the attractive factors of a single design element differed among users with diverse backgrounds. App icons were assessed on the basis of aesthetics to identify attractive factors and thereby assist designers in understanding and implementing design elements and improving the overall visual appeal of their apps. The result of this investigation is crucial to the presentation of app icons in online app stores.

Simultaneous Quantification of 13 Ginsenosides by LC-MS/MS and its Application in Diverse Ginseng Extracts

  • Jo, Jung Jae;Cho, Pil Joung;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제9권2호
    • /
    • pp.41-45
    • /
    • 2018
  • Ginseng (Panax ginseng Meyer) has been used as traditional herbal drug in Asian countries. Ginsenosides are major components having pharmacological and biological efficacy like anti-inflammatory, anti-diabetic and anti-tumor effects. To control the quality of the components in diverse ginseng products, we developed a new quantitative method using LC-MS/MS for 13 ginsenosides; Rb1, Rb2, Rc, Rd, Re, Rf, 20(S)-Rh1, 20(S)-Rh2, Rg1, 20(S)-Rg3, F1, F2, and compound K. This method was successfully validated for linearity, precision, and accuracy. This quantification method applied in four representative ginseng products; fresh ginseng powder, white ginseng powder, red ginseng extract powder, and red ginseng extract. Here the amounts of the 13 ginsenosides in the various type of ginseng samples could be analyzed simultaneously and expected to be suitable for quality control of ginseng products.

Rapid Quantification of Salmonella in Seafood Using Real-Time PCR Assay

  • Kumar, Rakesh;Surendran, P.K.;Thampuran, Nirmala
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.569-573
    • /
    • 2010
  • A quantitative detection method for Salmonella in seafood was developed using a SYBR Green-based real-time PCR assay. The assay was developed using pure Salmonella DNA at different dilution levels [i.e., 1,000 to 2 genome equivalents (GE)]. The sensitivity of the real-time assay for Salmonella in seeded seafood samples was determined, and the minimum detection level was 20 CFU/g, whereas a detection level of 2 CFU/ml was obtained for pure culture in water with an efficiency of ${\geq}85%$. The real-time assay was evaluated in repeated experiments with seeded seafood samples and the regression coefficient ($R^2$) values were calculated. The performance of the real-time assay was further assessed with naturally contaminated seafood samples, where 4 out of 9 seafood samples tested positive for Salmonella and harbored cells <100 GE/g, which were not detected by direct plating on Salmonella Chromagar media. Thus, the method developed here will be useful for the rapid quantification of Salmonella in seafood, as the assay can be completed within 2-3 h. In addition, with the ability to detect a low number of Salmonella cells in seafood, this proposed method can be used to generate quantitative data on Salmonella in seafood, facilitating the implementation of control measures for Salmonella contamination in seafood at harvest and post-harvest levels.

Quantitative Analysis of Leuconostoc mesenteroides and Lactobacillus plantarum Populations by a Competitive Polymerase Chain Reaction

  • Koh, Young-Ho;Kim, Myoung-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.801-806
    • /
    • 2002
  • A multiplex competitive polymerase chain reaction (PCR) method was developed for the rapid identification and quantification of Leuconostoc mesnteroides and Lactobacillus plantarum populations which are the key microorganisms in kimchi fermentation. The strain-specific primers were designed to selectively amplify the target genes encoding 165 rRNA of L. plantarum and dextransucrase of L. mesenteroides. There was a linear relationship between the band intensity of PCR products and the number of colony forming units of each model organism. The PCR quantification method was compared with a traditional plate-counting method f3r the enumeration of the two lactic acid bacteria in a mixed suspension culture and also applied to a real food system, namely, watery kimchi. The population dynamics of the two model organisms in the mixed culture were reliably predictable by the competitive PCR analysis.

Accurate Quantification of Saccharin Using Isotope Dilution Liquid Chromatography Mass Spectrometry (ID-LC/MS)

  • Lee, Yun-Jung;Kim, Byung-Joo;Kim, Jeong-Kwon;Ahn, Seong-Hee
    • Mass Spectrometry Letters
    • /
    • 제2권2호
    • /
    • pp.37-40
    • /
    • 2011
  • Saccharin is a commonly used artificial sweetener in foodstuffs. However, for its carcinogenic dispute, it has been regulated by government bodies. In this study, isotope dilution mass spectrometry (ID-MS) was introduced for the accurate quantification of saccharin. To employ ID-LC/MS, we obtained its isotope analogue, $^{13}C_1$-sodium saccharin, by customized synthesis. Samples were spiked with $^{13}C_1$-sodium saccharin and analyzed with LC/MS in negative mode. Chromatographic conditions were optimized for the adequate chromatographic retention and separation of saccharin with a $C_{18}$ column. MS was operated with electrospray ionization by the selected ion monitoring (SIM) mode of $[M-H]^-$ for saccharin (m/z 182) and $[M-Na]^-$ for its isotope analogue (m/z 183). To validate the ID-LC/MS method for accurate measurement, we prepared a batch of a candidate material by sortifying quasi-tea-drinks with saccharin and analyzed samples gravimetrically fortified in various levels of concentration. The repeatability and reproducibility of this method was tested by analyzing the reference material. Result show that ID-LC/MS is a reliable method for the quantitative analysis of saccharin.