• Title/Summary/Keyword: Quality Design Simulation

Search Result 871, Processing Time 0.03 seconds

RF Generator Design for High-quality Power at Light Load

  • Hee Sung Shin;Shin Ui Lee;Kyung Hyun Lim;Euihoon Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2024
  • To generate the plasma required in dry cleaning processes, the plasma chamber must be supplied with a high-quality AC voltage with a voltage of more than 1 kV and a frequency of 400 kHz. In the existing research, many methods to supply high power have been studied, but how to improve the quality of the power for high-quality plasma has been relatively little studied. In this paper, we propose a study to improve the quality of RF power circuit for high-quality plasma generation in dry cleaning method. Existing methods in the environment of full-bridge-based RF power circuits must perform PWM duty control in the light load region. This causes distortions in the waveform, resulting in poor power quality, which directly leads to poor plasma quality. To solve these problems, a half-bridge switching method is proposed and the improvement in waveform quality is verified. To verify the feasibility of the design and control algorithm proposed in this paper, an RF power circuit prototype is fabricated and the proposed design and control method is verified through simulation and actual experiments under dummy load.

  • PDF

Effective Manufacturing Operation based on Simulation (시뮬레이션을 이용한 공정운영 효율화)

  • Jeon, Tae Bo;Jin, Min-Ji
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.3-9
    • /
    • 2011
  • Simulation plays an important role for system analysis. In this study, a manufacturing system has been analyzed through computer simulation. We first briefly explain the considered system with prevailing problems. We then build a simulation model using ARENA simulation language. Based on two selected performance measures, material transporter load and hourly throughput, explicit system analyses have been performed. We addressed four parameters - variation of the processing time, number of raw material transporters, quality failure rate, and machine failures - as the input parameters affecting the output measures selected. We adopted Taguchi's orthogonal array in statistical experimental design and drew meaningful results from the analysis. The results given in the study may provide a good guidance for practical applications.

  • PDF

Drop/Impact Simulation and Experimental Verification of a Reciprocating Compressor Body (왕복동형 압축기의 낙하충격 시뮬레이션 및 실험적 검증)

  • Kim, Tae-Jong;Kim, Moon-Saeng;Koo, Ja-Ham
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.484-490
    • /
    • 2007
  • A reciprocating compressor used in domestic refrigerators can be subjected to many different forms of shock. These shocks are usually experienced during transporting the products from a manufacturer to customers. The hermetic structure of this kind of compressor makes it difficult to conduct drop tests for identifying the failure mechanism and their drop behaviors. The drop/impact simulation for a reciprocating compressor has been carried out with the explicit code LS-DYNA and its validation has been experimentally verified. Simulation results are in good agreement with those of drop test. The present method of drop/impact simulation provides an efficient and powerful solution to improve the design quality and reduce the design period.

SoC Front-end 설계를 위한 통합 환경

  • 김기선;김성식;이희연;김기현;채재호
    • The Magazine of the IEIE
    • /
    • v.30 no.9
    • /
    • pp.1002-1011
    • /
    • 2003
  • In this paper, we introduce an integrated SoC front-end design & verification environment which can be practically used in the embedded 32-bit processor-core SoC VLSI design. Our introduced SoC design & verification environment integrates two most important flows, such as the RTL power estimation and code coverage analysis, with the functional verification (chip validation) flow which is used in the conventional simulation-based design. For this, we developed two simulation-based inhouse tools, RTL power estimator and code coverage analyzer, and used them to adopt them to our RTL design and to increase the design quality of that. Our integrated design environment also includes basic design and verification flows such as the gate-level functional verification with back annotation information and test vector capture & replay environment.

  • PDF

BEPAT: A platform for building energy assessment in energy smart homes and design optimization

  • Kamel, Ehsan;Memari, Ali M.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.321-339
    • /
    • 2017
  • Energy simulation tools can provide information on the amount of heat transfer through building envelope components, which are considered the main sources of heat loss in buildings. Therefore, it is important to improve the quality of outputs from energy simulation tools and also the process of obtaining them. In this paper, a new Building Energy Performance Assessment Tool (BEPAT) is introduced, which provides users with granular data related to heat transfer through every single wall, window, door, roof, and floor in a building and automatically saves all the related data in text files. This information can be used to identify the envelope components for thermal improvement through energy retrofit or during the design phase. The generated data can also be adopted in the design of energy smart homes, building design tools, and energy retrofit tools as a supplementary dataset. BEPAT is developed by modifying EnergyPlus source code as the energy simulation engine using C++, which only requires Input Data File (IDF) and weather file to perform the energy simulation and automatically provide detailed output. To validate the BEPAT results, a computer model is developed in Revit for use in BEPAT. Validating BEPAT's output with EnergyPlus "advanced output" shows a difference of less than 2% and thus establishing the capability of this tool to facilitate the provision of detailed output on the quantity of heat transfer through walls, fenestrations, roofs, and floors.

A Study of Control Chart for Skewness

  • Lee, Jung Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 1995
  • Sample skewness has not received much attention from researchers to design a control chart. In this paper, control charts based on two skewness measures are studied to control a manufacturing process. One skewness measure is the third central moment about mean, the other is the third L-moment which is a linear combination of order statistics. Since the exact sampling distributions of two skewness measures are unknown, empirical sampling distributions are studied using simulation. The sampling distributions are used to design control charts for skewness and performance of two skewness measures is compared.

  • PDF

A Case Study on Quality Improvement for Prevent Water Infiltration to ISA in Aircraft (항공기용 유압작동기 수분유입 방지를 위한 품질개선 사례)

  • Shin, Jae Hyuk;Kim, Tae Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.467-478
    • /
    • 2019
  • Purpose: The purpose of this paper is to improve quality for water infiltration to FCISA during military aircraft operation. Methods: A series of troubleshooting studies were conducted to identify the root cause of the water infiltration and reproduce the defects through various simulation tests. And design improvement measures were derived, and countermeasures were taken to prevent recurrence of moisture inflow defects. Conclusion: FCISA operates a very important role in the operation of military aircraft, and defects due to water infiltration are very fatal to flight safety. In this study, the root cause was identified and the design improvement to prevent recurrence was carried out through the failure investigation performed in this study, and the FCISA was improved so that the flight safety was not affected. The results of this study will be valuable back data that can be reflected in the design process through Lessons-Learned in the design phase of the aircraft that will be developed in the future.

A Survey of Game Mechanics Simulation Methods (게임 메카닉스 시뮬레이션 방법에 관한 조사연구)

  • Chang, Hee-Dong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.441-450
    • /
    • 2005
  • As game markets are rapidly growing, the cost and period of game development are both increasing. These imply that the game development projects require more professional management of the project. Game mechanics is an algorithm of the gameplay on a specific game-platform. Game mechanics is concentrated on engineering elements of the game and its quality should be continuously managed from the design phase to the implementation phase. In the design phase, useful methods that can analyze the quality of game mechanics are the simulations. There are several simulation methods of the game mechanics but each method has limited use range because of its characteristics. In this Paper, we survey the game mechanics simulation methods and analyze the characteristics of each method. By the analyzed results, the Petri net model simulation method is good for analyzing total quality of no-error, optimization, and play-balance of the game mechanics but others are not.

Case Study of Accumulated Tolerance Analysis Using Monte Carlo Simulation for a Portable Medical Appliance (몬테카를로 시뮬레이션을 이용한 휴대용 의료기기 누적공차분석에 대한 사례연구)

  • Lee, Young Hoon;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.83-92
    • /
    • 2016
  • Tolerances are defined as the allowable variations in the geometry and positioning of parts in a mechanical assembly for assuring its proper functionality. Tolerance analysis is the activity related to estimating the potential accumulated variation in assemblies. If the estimated variances go out of the specified ranges, it causes the quality problem. Thus, we should adjust the tolerances and this activity is called as tolerance design. In this paper, a case study on the accumulated tolerance analysis and design using Monte Carlo simulation is introduced, which is applied for developing a portable medical device. Using the simulation study, we can improve the assemblability and functionality of the product.

Simulations of Gate Driving Schemes for Large Size, High Quality TFT-LCD (대면적 고화질 TFT-LCD용 게이트 Driving에 관한 Simulation)

  • Jung, Soon-Shin;Yun, Young-Jun;Kim, Tae-Hyung;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1809-1811
    • /
    • 1999
  • In recent years, attempts have been made to greatly improve the display quality of active-matrix liquid crystal display devices, and many techniques have been proposed to solve such problems as gate delay, feed-through voltage and image sticking. Gate delay is one of the biggest limiting factors for large-screen-size, high-resolution thin-film transistor liquid crystal display (TFT/LCD) design. Many driving method proposed for TFT/LCD progress. Thus we developed gate driving signal generator. Since Pixel-Design Array Simulation Tool (PDAST) can simulate the gate, data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the driving signals of gate lines on the pixel operations can be effectively analyzed.

  • PDF