• Title/Summary/Keyword: Quadrilateral Shell Element

Search Result 29, Processing Time 0.028 seconds

Shape Finding and Stress Analyses of Tension Membrane Structures by using 4-node Isoparametric Elements (4월점 등매개요소를 이용한 인장막구조(引張膜構造)의 형상해석(形狀解析) 및 응력해석(應力解析))

  • Lee, Kyung-Soo;Lee, Hyung-Hoon;Moon, Jeong-Ho;Han, Sang-Eul
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.222-229
    • /
    • 2004
  • This study purports to analyze equally stressed surfaces in tension-membrane structures through a geometrically nonlinear approach. It adopts the formulation of a 4-node quadrilateral isoparametric plane stress element considering the orthotropic characteristic of membrane textures. Tension structures, which include cables and tension membranes, such as a cable dome initially exhibit unstable conditions because no initial internal stiffness such as bending stiffness is present. Such a structural system requires prestressing to the tension members to attain a stable state. A tension-membrane structure retains a stable three dimensional curved surface as a structural shape. This analytical process for finding the geometry is referred to as Shape Finding Analysis. In order to assess the validity of this study, we examine equally stressed surfaces of saddle and catenary shape shell structures and carry out pertinent stress analyses

  • PDF

Medial Surface Generation by Using Chordal Axis Transform in Shell Structures (쉘 구조물에서 Chordal Axis Transform 을 이용한 중립면 생성)

  • 권기연;박정민;이병채;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.865-870
    • /
    • 2004
  • This paper describes the generation of chordal surface for various shell structures, such as automobile bodies, plastic injection mold components and shell metal parts. After one-layered tetrahedral mesh is generated by an advancing front algorithm, the chordal surface is generated by cutting a tetrahedral element. It is generated one or two elements at a tetrahedral element and the chordal surface is composed with triangular or quadrilateral elements. This algorithm has been tested on several models with rib structure.

  • PDF

A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure (쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구)

  • 최찬문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

An extended finite element method for modeling elastoplastic FGM plate-shell type structures

  • Jrad, Hanen;Mars, Jamel;Wali, Mondher;Dammak, Fakhreddine
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.299-312
    • /
    • 2018
  • In this paper, an extended finite element method is proposed to analyze both geometric and material non-linear behavior of general Functionally Graded Material (FGM) plate-shell type structures. A user defined subroutine (UMAT) is developed and implemented in Abaqus/Standard to study the elastoplastic behavior of the ceramic particle-reinforced metal-matrix FGM plates-shells. The standard quadrilateral 4-nodes shell element with three rotational and three translational degrees of freedom per node, S4, is extended in the present study, to deal with elasto-plastic analysis of geometrically non-linear FGM plate-shell structures. The elastoplastic material properties are assumed to vary smoothly through the thickness of the plate-shell type structures. The nonlinear approach is based on Mori-Tanaka model to underline micromechanics and locally determine the effective FGM properties and self-consistent method of Suquet for the homogenization of the stress-field. The elasto-plastic behavior of the ceramic/metal FGM is assumed to follow Ludwik hardening law. An incremental formulation of the elasto-plastic constitutive relation is developed to predict the tangent operator. In order to to highlight the effectiveness and the accuracy of the present finite element procedure, numerical examples of geometrically non-linear elastoplastic functionally graded plates and shells are presented. The effects of the geometrical parameters and the volume fraction index on nonlinear responses are performed.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

A LNG Pressure Vessel Design (LNG 압력용기의 설계)

  • 김정위
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.28-37
    • /
    • 2000
  • In this paper the LNG vessel of the Moss type which is capable of lifting 15,261 tons is investigated in the view point of the pressure vessel preliminary design using the finite element method. The Pressure vessel design is based on the equivalent stress levels due to the internal pressure. The finite element model of the spherical pressure vessel is configured using 4 noded quadrilateral shell element. The finite element analysis program NASTRAN and ANSYS 5.5are implemented. The design is compared with the three kinds of the boundary condition : first, where the equator of the pressure vessel is fixed, and where the top and is fixed, and, the bottom end is fixed, respectively. A comparison is presented between the results obtained by the finite element model and by the prototype production model. Additionally just below position(case 1 & case 2) of equator ring was carried out by using ANSYS 5.5. The results show that the vessel design based on the stress is acceptable at the preliminary design.

  • PDF

Adaptive Finite Element Mesh Construction for Optimal Design of Spot Welding (점용접부 최적설계를 위한 적응적 유한요소망의 구성)

  • Park, Jang-Won;Chae, Su-Won;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1763-1770
    • /
    • 2000
  • A finite element interface system for the design of optimal spot welding locations has been developed. In order to find out the optimal locations of spot welding points, iterative finite element an alyses are necessary, and thus automatic generation of finite element model for the structures with spot welded pointsis required. In this interface system, quadrilateral shell elements are automatically generated for finite element analysis of spot welded structured, which employs a domain decomposition methodand adaptive mesh(h-method).

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.