• 제목/요약/키워드: Quadrilateral Mesh

검색결과 74건 처리시간 0.023초

Problems with a popular thick plate element and the development of an improved thick plate element

  • Cheng, Y.M.;Law, C.W.
    • Structural Engineering and Mechanics
    • /
    • 제29권3호
    • /
    • pp.327-349
    • /
    • 2008
  • Some unreasonable results from the use of a popular thick plate element are discovered from the analysis of a raft foundation and a pile cap in Hong Kong. To overcome the problems, the authors have developed a new shear deformable beam which can be extended to a general quadrilateral shear deformable plate. The behaviour of this new element under several interesting cases is investigated, and it is demonstrated that the new element possesses very high accuracy under different depth/span ratios, and the results from this new element are good even for a coarse mesh.

Strain-smoothed polygonal finite elements

  • Hoontae Jung;Chaemin Lee;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.311-324
    • /
    • 2023
  • Herein, we present effective polygonal finite elements to which the strain-smoothed element (SSE) method is applied. Recently, the SSE method has been developed for conventional triangular and quadrilateral finite elements; furthermore, it has been shown to improve the performance of finite elements. Polygonal elements enable various applications through flexible mesh handling; however, further development is still required to use them more effectively in engineering practice. In this study, piecewise linear shape functions are adopted, the SSE method is applied through the triangulation of polygonal elements, and a smoothed strain field is constructed within the element. The strain-smoothed polygonal elements pass basic tests and show improved convergence behaviors in various numerical problems.

재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법 (Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition)

  • 위르가고초;정문환;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권2호
    • /
    • pp.1-10
    • /
    • 2016
  • 의상 시뮬레이션과 렌더링 계산 비용은 메쉬의 종류와 그 품질에 크게 좌우 된다. 일반적으로 정확도와 효율성 면에서 삼각메쉬 보다 사각메쉬가 더 선호된다. 본 논문은 재귀 기하 분할법에 기초한 의복 패턴의 사각화 방법을 기술한다. 논문에서는 기존의 방법에서 두 가지 개선점을 제안한다. 첫째, 제안 방법은 기존의 방법보다 향상 된 회귀 기하 분해 알고리즘을 사용한다. 제안된 방법에서 의복패턴의 물리적 도매인은 보다 더 간단하고 맵핑 가능한 형태로 분해된다. 둘째, 본 논문에서는 정점 분류 알고리즘의 유효성 확인작업을 수행한다. 제안 알고리즘을 이용하여 인식 되지 않은 정점 분류에 대한 유효성을 검증 할 수 있다.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Non-conforming modes for improvement of finite element performance

  • Choi, Chang-Koon;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.595-610
    • /
    • 2002
  • This paper presents an efficiency of various non-conforming (NC) modes in development of a series of new finite elements with the special emphasis on 4-node quadrilateral elements. The NC modes have been used as a key scheme to improve the behaviors of various types of new finite elements, i.e., Mindlin plate bending elements, membrane elements with drilling degrees of freedom, flat shell elements. The NC modes are classified into three groups according to the 'correction constants' of 'Direct Modification Method'. The first group is 'basic NC modes', which have been widely used by a number of researchers in the finite element communities. The basic NC modes are effective to improve the behaviors of regular shaped elements. The second group is 'hierarchical NC modes' which improve the behaviors of distorted elements effectively. The last group is 'higher order NC modes' which improve the behaviors of plate-bending elements. When the basic NC modes are combined with hierarchical or higher order NC modes, the elements become insensitive to mesh distortions. When the membrane component of a flat shell has 'hierarchical NC modes', the membrane locking can be suppressed. A number of numerical tests are carried out to show the positive effect of aforementioned various NC modes incorporated into various types of finite elements.

형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사 (Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques)

  • 정준호;양동렬
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

J적분을 첨가한 mongrel 특이요소 개발 및 Al 7075-T6 wing spar파괴인성 실험 (The development of mongrel singular element with J-integral and the toughness test for Al 7075-T6 wing spar)

  • 강치행
    • 한국군사과학기술학회지
    • /
    • 제1권1호
    • /
    • pp.154-165
    • /
    • 1998
  • 본 논문에서는 Mongrel원리를 적용한 6절점 삼각형 특이 요소와 8절점 사각형 요소를 사용하여 등방성 재료의 평면균열문제에 대한 응력확대계수를 직,간접적으로 구함으로서 그 수렴성을 입증하였다. 평면균열문제의 경우, 전 영역의 균열크기에 걸쳐 동일한 분할 형태와 요소 수에서 Mongrel 특이요소를 균열끝 요소로 사용하여 직접 구한 응력확대계수가 J-적분을 통해 간접 계산된 응력확대계수에 비해 정해에 잘 일치하였다. 또한 항공기 수명관리의 핵심이라 할 수 있는 피로균열 성장해석을 위한 기초실험으로서 F-5 날개 스파 Al 7075-T6의 CT시편을 채취하여 파괴인성실험을 수행한 결과 L-T방향 파괴인성치는 31.06 ksi.inch$\frac{1}{2}$ 이었다.

  • PDF

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

축대칭 문제에서의 동적 응력확대계수의 계산 (Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems)

  • 이성희;심우진
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.207-216
    • /
    • 2003
  • 본 논문에서는 균열을 지닌 축대칭 문제를 해석하기 위하여 시간적분형 운동방정식을 바탕으로 한 유한요소 해법을 제시한다. 유한요소메쉬는 8절점 등매개변수 사변형 요소와 균열선단에서의 1/4절점 삼각형 특이요소로 구성되며, 동적 응력확대계수는 균열면상의 1/4절점의 y방향 변위로부터 구한다. 제시된 해법의 정확성과 타당성을 검증하기 위하여 내부에 원환균열을 지닌 무한 탄성체가 균열면상에서 충격하중을 받을 때의 동적 응력확대계수를 계산하고 타 수치결과와 비교 검토하였다. 응용 예제로서 원환균열과 원주균열을 지닌 중실축과 중공축의 동적 응력확대계수를 균열의 길이와 축의 길이에 따른 영향을 자세히 조사하였다. 균열길이가 커지면 동적 응력확대계수가 커지고, 축의 길이가 길어지면 동적 응력확대계수 곡선의 폭도 함께 증가됨을 확인하였다. 그리고 균열의 위치가 안쪽에 포함될 경우보다는 바깥쪽에 포함될 때 더 큰 동적 응력확대계수가 발생됨을 밝힌다.