• Title/Summary/Keyword: Quadrature-coupled VCO

Search Result 7, Processing Time 0.019 seconds

Low-Phase Noise QVCO for WLAN in 0.13-㎛ RF CMOS Process Technology

  • Miyoung Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.246-254
    • /
    • 2024
  • In this paper, a Quadrature Voltage Controlled Oscillator of a wireless transceiver operating in the 5GHz UNII band of the wireless LAN 802.11a standard was proposed. In addition, a new structure of low-noise, low-power Quadrature Coupled VCO was proposed using the quadrature phase output as an input to the switching current source. If this structure is applied to other circuits such as a structure in which the current source is separated or a common use of a current source, a phase noise characteristic of 17 dB better than the existing VCO can be obtained. In particular, it is designed to operate with low power in a simple structure compared to the existing in-phase QVCO. The circuit was designed to operate with a supply voltage of 1.2V by the TSMC 0.13㎛ RF CMOS process. The measured VCO has a large tuning range of 20% operating at frequencies of 4.5 - 5.6 GHz, and phase noise of -117 dBc/Hz or less was obtained at the 1 MHz offset. The output phase error of the proposed QVCO was less than 0.5 degrees, and the total power consumption was able to obtain 5.3 mW at 1.2V.

$0.13{\mu}m$ CMOS Quadrature VCO for X-band Application ($0.13{\mu}m$ CMOS 공정을 이용한 X-band용 직교 신호 발생 전압제어 발진기)

  • Park, Myung-Chul;Jung, Seung-Hwan;Eo, Yun-Seong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.41-46
    • /
    • 2012
  • A quadrature voltage controlled oscillator(QVCO) for X-band is presented in this paper. The QVCO has fabricated in Charted $0.13{\mu}m$ CMOS process. The QVCO consists of two cross-coupled differential VCO and two differential buffers. The QVCO is controlled by 4 bit of capacitor bank and control voltage of varactor. To have a linear quality factor of varactors, voltage biases of varactors are difference. The QVCO generates frequency tuning range from 6.591 GHz to 8.012 GHz. The phase noise is -101.04 dBc/Hz at 1MHz Offset when output frequency is 7.150 GHz. The supply voltage is 1.5 V and core current 6.5-8.5 mA.

Single-balanced Direct Conversion Quadrature Receiver with Self-oscillating LMV

  • Nam-Jin Oh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • This paper proposes two kinds of single-balanced direct conversion quadrature receivers using selfoscillating LMVs in which the voltage-controlled oscillator (VCO) itself operates as a mixer while generating an oscillation. The two LMVs are complementary coupled and series coupled to generate the quadrature oscillating signals, respectively. Using a 65 nm CMOS technology, the proposed quadrature receivers are designed and simulated. Oscillating at around 2.4 GHz frequency, the complementary coupled quadrature receiver achieves the phase noise of -28 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The other series coupled receiver achieves the phase noise of -31 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain of the two single-balanced receivers is 37 dB and 45 dB, respectively. The double-sideband noise figure of the two receivers is 5.3 dB at 1 MHz offset. The quadrature receivers consume about 440 μW dc power from a 1.0-V supply.

Comparison of Phase Noise Characteristics of Three Quadrature Voltage Controlled Oscillators (3가지 직교신호 발생 전압제어 발진기의 위상 잡음 특성비교)

  • Moon Seong-Mo;Cho Il-Hyun;Lee Moon-Que
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.73-79
    • /
    • 2005
  • Various CMOS quadrature-voltage-controlled oscillators(QVCOS) are designed and fabricated for the comparison of the phase noise characteristic. The first one is that the QVCO is composed of two Colpitts oscillators cross-coupled with PMOS coupling transistors. The second and third ones are the conventional LC VCO and the balanced Colpitts VCO followed by the frequency-divide-by-two, respectively. The simulation result demonstrate that Colpitts schemes show better phase noise performance by 6 dB than that of a conventional stheme in which LC VCO is followed by the frequency-divide-by-two.

  • PDF

Comparison of phase noise characteristic of Quadrature Voltage Controlled Oscillator (직교신호 발생 전압제어 발진기의 위상 잡음 특성비교)

  • Cho, Il-Hyun;Lee, Moon-Que;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2333-2335
    • /
    • 2005
  • Various CMOS quadrature-voltage-controlled oscillators(QVCOs) are designed and fabricated for the comparison of the phase noise. The core VCO is composed of two Colpitts oscillators which are cross-coupled with PMOS pair. For the comparison of phase noise with the proposed scheme, the conventional LC VCO followed by the frequency-divide-by-two is designed. The simulation result demonstrate that the proposed scheme shows better phase noise performance by 6dB than that of a conventional scheme in which LC VCO is followed by the frequency-divide-by-two.

  • PDF

A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks (센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기)

  • Shim, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.121-126
    • /
    • 2019
  • The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.

A Parallel Coupled QVCO and Differential Injection-Locked Frequency Divider in 0.13 μm CMOS

  • Park, Bong-Hyuk;Lee, Kwang-Chun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.35-38
    • /
    • 2010
  • A fully integrated parallel-coupled 6-GHz quadrature voltage-controlled oscillator (QVCO) has been designed. The symmetrical parallel-coupled quadrature VCO is implemented using 0.13-${\mu}m$ CMOS process. The measured phase noise is -101.05 dBc/Hz at an offset frequency of 1 MHz. The tuning range of 710 MHz is achieved with a control voltage ranging from 0.3 to 1.4 V. The average output phase error is about $1.26^{\circ}$ including cables and connectors. The QVCO dissipates 10 mA including buffer from the 1.5 V supply voltage. The output characteristic of the differential injection-locked frequency divider (DILFD), which has similar topology to the QVCO, is presented.