• Title/Summary/Keyword: Quadrature

Search Result 1,091, Processing Time 0.028 seconds

Use of the differential quadrature method for the buckling analysis of cylindrical shell panels

  • Redekop, D.;Makhoul, E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.451-462
    • /
    • 2000
  • Buckling loads are determined for thin isotropic circular cylindrical shell panels subject to radial pressure using the new differential quadrature method. The Budiansky stability theory serves as the basis of the analysis. For this problem involving four boundary lines a two-dimensional approach is used, and a detailed convergence study is carried out to determine the appropriate analysis parameters for the method. Numerical results are determined for a total of twelve cylindrical shell panel cases for a number of different boundary support conditions. The results are compared with analytical and finite element method results. Conclusions are drawn about the technical significance of the results and the solution process.

5GHz CMOS Quadrature Up-Conversion Mixer

  • Lee, Jang-U;Kim, Sin-Nyeong;Yu, Chang-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.617-618
    • /
    • 2006
  • A CMOS quadrature Up-converter for a direct-conversion receiver of 5.15-5.825GHz wireless LAN is described. The Up-converter consists of two sub-harmonic mixers, for I and Q channels, and an LO generation network. In order to decrease the number of inductor, I and Q path are merged. The simulation results including all the parasitics show -17.3dB conversion gain at center and -8 dBv oIP3 while consuming 22.968mW under 1.8V supply. The quadrature Up-converter is under fabrication with the other transmitter blocks in a $0.18{\mu}m$ CMOS technology.

  • PDF

Error Probabilities for Digital Transmission in Correlated Gaussian Fading Channels (상관가우스 페이딩 채널에서 디지틀전송에 대한 오율)

  • 한영렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.18-24
    • /
    • 1984
  • Calculation of error probabilities for a coherent phase-shilft keyed communication system operating in a transionospheric scintillation channel is accomplished by means of the Gauss-quadrature integration formula. The channel model used, patterned after Rino's work, is slowly flat fading wherein the envelope of the received signal is modeled as the envelope of correlated Gaussian quadrature random processes. The error probability for the scintillation channel is calculated using actual ionospheric scintillation data for transmission in the UHF region(30-300MHz).

  • PDF

Wavelength Readout of A Fiber Laser Using Time Delayed Quadrature Sampling (시간지연샘플링을 이용한 광섬유레이저의 파장변화검출)

  • 김종섭;송민호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.31-38
    • /
    • 2004
  • The wavelength variation of a scanned fiber laser is analyzed using quadrature sampling technique. By time delayed sampling of a phase modulated Mach-Zender interferometer, the wavelength information can be precisely determined regardless of the nonlinearity in the Fabry-Perot wavelength filter which scanned the fiber laser. A wavelength readout resolution of ~20 pm was obtained at 2 KHz M-Z modulation frequency, and it was shown that the resolution could be improved in case of using an electro-optic phase modulator.

Buckling analysis of composite plates using differential quadrature method (DQM)

  • Darvizeh, M.;Darvizeh, A.;Sharma, C.B.
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.99-112
    • /
    • 2002
  • The differential quadrature method (DQM) is a numerical technique of rather recent origin, which by its continually increasing applications in different problems of engineering, is a competing alternative to the conventional numerical techniques for the solution of initial and boundary value problems. The work of this paper concerns the application of the DQM in the area of the buckling of multi layered orthotropic composite plates with various boundary conditions the buckling of multi layered composite plates with constant and variable thickness under axial compressive static loading is considered. The effects of fiber orientation and boundary conditions on static behavior of composite plates are presented. The comparison of results from the present method and those obtained from NISA II software shows the accuracy and reliability of this method.

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature

  • Moradi, S.;Mansouri, Mohammad Hassan
    • Steel and Composite Structures
    • /
    • v.12 no.2
    • /
    • pp.129-147
    • /
    • 2012
  • In this paper, the thermal buckling analysis of rectangular composite laminated plates is investigated using the Differential Quadrature (DQ) method. The composite plate is subjected to a uniform temperature distribution and arbitrary boundary conditions. The analysis takes place in two stages. First, pre-buckling forces due to a temperature rise are determined by using a membrane solution. In the second stage, the critical temperature is predicted based on the first-order shear deformation theory. To verify the accuracy of the method, several case studies were used and the numerical results were compared with those of other published literatures. Moreover, the effects of several parameters such as aspect ratio, fiber orientation, modulus ratio, and various boundary conditions on the critical temperature were examined. The results confirm the efficiency and accuracy of the DQ method in dealing with this class of engineering problems.

Broad-Band Design of Lumped-Element 3 dB Quadrature Hybrid for Satellite Communications (위성통신용 집중정수형 3dB $90{\circ}$ 방향성 결합기의 광대역 설계에 관한 연구)

  • 김동일;김시화;진강규;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.29-40
    • /
    • 1986
  • Abroad-band design method of a lumped-element 3 dB quadrature hybrid without magnetic coupling is proposed and discussed, where techniques of cascading fundamental hybrids via second-order delay equializers and adding matching sections are adopted. It is shown that the designed broad-band lumped-element 3 dB quadrature hybrid can be easily constructed and its bandwidth reaches up to 54%. Furthermore, the experiments have been carried out, the results of which agree with the theoretical ones, and hence, the validity of the broad-band design method proposed here was confirmed.

  • PDF

Comparison of Two Reactive Power Definitions in DFIG Wind Power System under Grid Unbalanced Condition

  • Ha, Daesu;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.213-214
    • /
    • 2014
  • This paper compares two instantaneous reactive power definitions in DFIG wind turbine with a back-to-back three-level neutral-point clamped voltage source converter under unbalanced grid conditions. In general, conventional definition of instantaneous reactive power is obtained by taking an imaginary component of complex power. The other definition of instantaneous reactive power can be developed based on a set of voltages lagging the grid input voltages by 90 degree. A complex quantity referred as a quadrature complex power is defined. Proposed definition of instantaneous reactive power is derived by taking a real component of quadrature complex power. The characteristics of two instantaneous reactive power definitions are compared using the ripple-free stator active power control algorithm in DFIG. Instantaneous reactive power definition based on quadrature complex power has a simpler current reference calculation control block. Ripple of instantaneous active and reactive power has the same magnitude unlike in conventional definition under grid unbalance. Comparison results of two instantaneous reactive power definitions are verified through simulation.

  • PDF

Static analysis of monoclinic plates via a three-dimensional model using differential quadrature method

  • Bahrami, Kourosh;Afsari, Ahmad;Janghorban, Maziar;Karami, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.131-139
    • /
    • 2019
  • According to the properties of monoclinic materials, the normal and shear stresses are depending on both normal and shear strains. In the current investigation, the static analysis of monoclinic plates based on three dimensional elasticity theory is investigated. New governing equations and boundary conditions are derived for monoclinic plates and the Differential Quadrature Method (DQM) is used to solve the static problem. In our method of solution, no approximation is used and the DQM is adopted in all directions. By showing the differences between our results and the results for especially orthotropic plates, one can find that it is worth to investigate the monoclinic plates to have more accurate results.

Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method

  • Bambill, D.V.;Felix, D.H.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.231-245
    • /
    • 2010
  • Vibration analysis of rotating beams is a topic of constant interest in mechanical engineering. The differential quadrature method (DQM) is used to obtain the natural frequencies of free transverse vibration of rotating beams. As it is known the DQM offers an accurate and useful method for solution of differential equations. And it is an effective technique for solving this kind of problems as it is shown comparing the obtained results with those available in the open literature and with those obtained by an independent solution using the finite element method. The beam model is based on the Timoshenko beam theory.