• Title/Summary/Keyword: Quadratic stability

Search Result 344, Processing Time 0.028 seconds

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.

Design of Robust Feedback Controller for Turbo let Engine : Time Domain Approach (터보 젯 엔진을 위한 강인성 궤환 제어기의 설계 : 시간영역 해석)

  • 손영창;김승우;지원호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.38-46
    • /
    • 1998
  • A theoretical and an empirical application of the speed control of a single-shaft turbo-jet engine was done using an observer for Linear Quadratic Gausian(LQG) that is one of the robust control fields. Based on a general controller design with state feedback, a controller with output feedback was designed to find out a sufficient condition in finding an Asymptotic Stability After defining of the total system through the modeling of a real turbo-jet engine, a Tracking Control was carried out. Furthermore, a saturation of the control input was theoretically considered in the output feedback controller to simulate more similar real condition.

  • PDF

LINER STABILITY OF A PERIODIC ORBIT OF TWO-BALL LINEAR SYSTEMS

  • Chi, Dong-Pyo;Seo, Sun-Bok
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.403-419
    • /
    • 1999
  • We introduce a Hamiltonian system which consists of two balls in the vertical line colliding elastically with each other and the floor. Wojtkowski proved that for the system of two linear balls with a linear potential (with gravity), there is a periodic orbit which becomes linearly stable if m1

  • PDF

Approximate Dynamic Programming for Linear Quadratic Optimal Control with Degree of Stability (안정도 단계가 고려된 LQ 최적 제어에 대한 근사 다이나믹 프로그래밍)

  • Lee, Jae-Young;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1794_1795
    • /
    • 2009
  • 본 논문에서는 안정도 단계(degree of stability)가 고려된 LQ 최적 제어에 대한 근사 다이나믹 프로그래밍 기법을 제안한다. 제안된 근사 다이나믹 프로그래밍 기법은 시스템 행렬(system matrix)를 모르는 경우에도 구현할 수 있으며, 특정 조건하에서 수렴성을 가짐을 수학적으로 증명하였다. 또한 제안된 알고리즘을 토대로 하는 최소 자승법 기반 실시간 구현 방법에 대해 소개하였으며, 컴퓨터 모의 실험을 통해 제안된 근사 다이나믹 프로그래밍의 성능을 입증하였다.

  • PDF

Nonlinear robust control design with quadratic Lyapunov function for robots with joint elasticity (2차의 리아프노프 함수에 의한 유연 조인트 로봇의 비선형 견실제어기 설계)

  • 김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.573-576
    • /
    • 1996
  • We propose robust control scheme for flexible joint manipulator in the presence of nonlinearity and mismatched uncertainty. The control is designed based on Lyapunov approach. The robust control which is based on the computed torque scheme and state transformation via implanted control is introduced. The design procedure starts with the construction of linearized subsystems via the computed torque method and then uses state transformation. With this approach we do not impose an upper-bound constraint on the inertia matrix in case it is known. Thus, this control can be applied to arbitrary manipulators. The resulting robust control guarantees practical stability for both the transformed system and the original system. The transformation is only based on the possible bound of uncertainty.

  • PDF

Design of T-S(Takagi-Sugeno) Fuzzy Control Systems Under the Bound on the Output Energy

  • Kim, Kwang-Tae;Joh, Joog-Seon;Kwon, Woo-Hyen
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • This paper presents a new T-S(Tae-Sugeno) fuzzy controller design method satisfying the output energy bound. Maximum output energy via a quadratic Lyapunov function to obtain the bound on output energy is derived. LMI(Linear Matrix Inequality) problems which satisfy an output energy bound for both of the continuous-time and discrete-time T-S fuzzy control system are also derived. Solving these LMIs simultaneously, we find a common symmetric positive definite matrix P which guarantees the global asymptotic stability of the system and stable feedback gains K's satisfying the output energy bound. A simple example demonstrates validity of the proposed design method.

  • PDF

Robust $\textrm{H}_\infty$ Control Design for the Space Station with Structured Parameter Uncertainty

  • Byun, Kuk-Whan;Bong-Wie;Dabid-Gaiier;John-Sunkel
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.431-441
    • /
    • 1991
  • A robust H$_{\infty}$ control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multi-parameter variations in the state-space formulation of H$_{\infty}$ control theory. An application of this robust H$_{\infty}$ control synthesis technique to the Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73% in one of the structured uncertainty directions. The performance and stability of this new robust H$_{\infty}$ controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.que.

  • PDF

Takagi-Sugeno Fuzzy Model-Based Approach to Robust Control of Boost DC-DC Converters

  • Seo, Sang-Wha;Choi, Han Ho;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.925-934
    • /
    • 2015
  • This paper considers the robust controller design problem for a boost DC-DC converter. Based on the Takagi-Sugeno fuzzy model-based approach, a fuzzy controller as well as a fuzzy load conductance observer are designed. Sufficient conditions for the existence of the controller and the observer are derived using Linear Matrix Inequalities (LMIs). LMI parameterizations of the gain matrices are obtained. Additionally, LMI conditions for the existence of the fuzzy controller and the fuzzy load observer guaranteeing α-stability, quadratic performance are derived. The exponential stability of the augmented fuzzy observer-controller system is shown. It is also shown that the fuzzy load observer and the fuzzy controller can be designed independently. Finally, the effectiveness of the proposed method is verified via experimental and simulation results under various conditions.

Optimal Design of Mooring Steel Pile for Submersible Fish Cage (부침식 가두리 계류용 말뚝의 최적설계)

  • 이나리;김현주;최학선;류연선
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.201-208
    • /
    • 1999
  • To develop a new fish cage which is required for offshore or moving cage culturing system has been gradually increased against being closely dense of fish cage in shallow water. Though submersible fish cage culturing system is essential technology for converting from shallow water into the offshore, it was pointed out the serious problem about stability of which are sinking and floating state. This study is presented conceptual design of submersible fish cage centered with a mooring steel pile to acquire stability and faculty. Design of mooring steel pile for submersible fish cage culturing system needs to carry out optimal design of mooring steel pile for which much efforts are required. Formulation and optimal design process of submersible fish cage are organized into using Sequential Quadratic Programming method of numerical optimization. For submersible fish cage system centered with a mooring steel pile, process of the optimal design is proposed and the optimal solutions are obtained.

  • PDF

Design of LQ-PSS for Power System Stability Enhancement using GA (전력계통 안정도 향상을 위한 GA적용 LQ-PSS 설계)

  • Jung, Young-Min;Lee, Seok-Oh;Kim, Hyung-Su;Park, June-Ho;Hwang, Gi-Hyun;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.128-130
    • /
    • 2001
  • This paper proposes the design of LQ-PSS(linear quadratic power system stabilizer) for improving power system stability using genetic algorithm(GA). We are tuned weighting matriecs of LQ-PSS using GA. To evalute the usefulness of the proposed method. we performed the nonlinear simulation on a single machine infinite system. As results of the simulation. the proposed method shows the better control performance than CPSS(conventional power system stabilizer) in trems of settling time and damping effects.

  • PDF