• Title/Summary/Keyword: QuEChERS

Search Result 81, Processing Time 0.023 seconds

Multi-residue Analysis of Pesticides using GC-TOF/MS, ECD, NPD with QuEChERS Sample Preparation (QuEChERS 전처리법과 GC-TOF/MS, ECD, NPD를 이용한 잔류농약 다성분분석)

  • Park, Jungwook;Kim, Aekyung;Kim, Jongpil;Lee, Hyanghee;Park, Duckwoong;Moon, Sujin;Ha, Dongryong;Kim, Eunsun;Seo, Kyewon
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.278-295
    • /
    • 2014
  • Fast and accurate multi-residue pesticides inspecting method needs in Agro-Fishery Products Inspection Center. So, We tried to seek the optimum method using GC-TOF/MS, GC-ECD, GC-NPD after QuEChERS sample preparation. In GC-TOF/MS, 138 kinds of pesticide were spiked at 0.3 and $0.5{\mu}g/g$for the identification and quantification in lettuce sample. Recoveries of 77 pesticides were between 70 and 130% with RSD (relative standard deviation lower than 20% at $0.3{\mu}g/g$. In GC-ECD, NPD, 146 kinds of pesticide were spiked for the identification and quantification in lettuce. Recoveries of 61 species were between 70 and 130% with lower than 20%. These results indicated that GC-TOF/MS, GC-ECD, NPD analysis with the QuEChERS sample preparation can be partly applied to multi-residue pesticides in vegetables.

Analysis of Pesticides in Herbal Medicine by QuEChERS and GC-MS/MS (QuEChERS 전처리와 GC-MS/MS를 활용한 생약의 잔류농약 분석 가능성 연구)

  • Seo, Go Eun;Kim, A Young;Pyo, Byoung Sik;Lee, Kyoung in
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.3
    • /
    • pp.207-216
    • /
    • 2020
  • The analysis method for qualitative analysis of the screening method that can be performed prior to the quantitative analysis of individual pesticide was reviewed in order to meet the safety standards that are being strengthened in the field of pesticide residue testing of herbal medicines. Among the residual pesticides presented in the Korean Pharmacopoeia, 56 pesticides, excluding 15 pesticides that need to be individually analyzed, were selected for analysis using QuEChERS preprocessing and GC-MS/MS, which are used in the existing agricultural products field. For each pesticide, the detection limit level of 0.001-0.005 mg/kg and the quantitative limit level of 0.002-0.017 mg/kg were confirmed. In the recovery test in which the standard was treated at a concentration of 0.02 mg/kg, it was confirmed that the proportion of pesticides satisfying the recovery of 70-120% was 85.7-96.4% for each herbal medicine, so it was confirmed that it was a level that could be reviewed by the screening method.

Trifluralin in aquatic products: QuEChERS and Gas chromatography-tandem mass spectrometry for trace amount detection

  • Le-Thi Anh-Dao;Do Minh-Huy;Vo Hong-Phong;Nguyen Cong-Hau
    • Analytical Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.205-215
    • /
    • 2023
  • In the present study, an analytical method was proposed for detecting trifluralin in aquatic products at trace concentrations. The method employed QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) and gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) as the sample preparation and measurement, respectively. The effect of the aqueous phase volume used in the QuEChERS was demonstrated, and the ratio of 10:10 (mL) between water and acetonitrile phase was used for 5 g of sample. Besides, dSPE using C18 and primary-secondary amine (PSA) was applied to remove the potential interferences from the food matrices, indicating no remarkable analyte loss. The linear range was built up from 0.50 ㎍ L-1 to 3.0 ㎍ L-1 (R2 = 0.9993). Other criteria, i.e., repeatability (RSDr = 0.86-1.96 %), reproducibility (RSDR = 1.09-2.01 %), and recovery (over 90 %), were in accordance with Appendix F of AOAC (2016) for method performance. Although no trifluralin was detected for the commercial samples (fish, shrimp, and breaded shrimp), the spiked samples performed favorable recoveries and precision.

The analysis of pesticide residue in leafy vegetables using the modified QuEChERS pre-treatment methods (QuEChERS 시료 처리법을 활용한 엽채류 중 잔류농약분석)

  • Kim, Yang-Hyeon;Hong, Su-Myeong;Son, Kyung-Ae;Lee, Ju-Young;Min, Zaw Win;Kwon, Hye-Young;Kim, Taek-Kyum;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • In analyzing pesticide residue, LLE (liquid liquid extraction) is generally applied as one of the existing methods, but needed quite a lot of organic solvents and analytical apparatuses for the sample pre-treatment. In addition to its long analysis time and complex analytical processes, it is required to develop a more rapid and efficient method at present. In order to establish an economic and simple pesticide residue analytical method, this study carried out a comparative experiment on the existing analytical method with a new sample pre-treatment method named QuEChERS (quick, easy, cheap, effective, rugged and safe), which extracts and refines pesticide components by directly adding solid powder into the sample. Both the two analytical methods showed favorable values of correlation coefficient ($R^2$ > 0.99) of calibration curves. In terms of the detection limit (identification limit), imidacloprid showed 0.02 mg/kg, while the rest of pesticides showed a level around 0.05 mg/kg. The results of this experiment revealed that the recovery of LLE was 92.8-100.9% and the RSD was below 2.5%. On the other hand, the recovery of QuEChERS was 92.2-101.6% and RSD was below 1.9%. As a result of comparing the amount of pesticide residue by the time between the two analytical methods by using Paired t-Test, there was no significant difference between the two analytical methods as the p-value ranged from 0.3148-0.9890. Considering the results of the two methods, the QuEChERS method had similar recovery, compared to the analytical method using the existing LLE, and the analytical time was shortened by about one fourth of that of the existing method. Moreover, since it excludes the use of harmful organic solvents like dichloromethane during the process of extraction, thus leading to protecting experimenters health and remarkably reducing the amount of disused solvents, it is judged as an echo-friendly and economic analytical method.

Analysis of 236 Pesticides in Apple for Validation of Multiresidue Method using QuEChERS Sample Preparation and PTV-GC/TOFMS Analysis (QuEChERS법과 PTV-GC/TOFMS 이용 잔류농약 분석법 개발을 위한 사과시료 중 236종 농약의 동시분석)

  • Ju, Ok-Jung;Kwon, Hye-Young;Park, Byeong-Jun;Kim, Chan-Seob;Jin, Yong-Duk;Lee, Je-Bong;Yun, Seo-Hee;Son, Kyung-Ae;Hong, Su-Myeong;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.401-416
    • /
    • 2011
  • The recent trend for pesticide residue analysis in food involves fast cleanup and use of mass spectrometry to achieve quantitative and qualitative analysis at the same time. Recently, the QuEChERS (quick, easy, cheap, effective, rugged and safe) multi-reside method has received much attention as a fast extraction and cleanup method of pesticide residue analysis. Therefore, multi-residue analysis of 236 pesticides was tested with the QuEChERS method by concurrent use of PTV-GC/TOFMS (gas chromatography/ time-of-flight mass spectrometry with programmable temperature vaporizer). PTV condition was optimized and when the method was applied to apples, pesticide recovery rates (spiked at 400 ng/g) ranged from 80% to 120%, and RSD values were under 10% for most compounds. The results showed that the QuEChERS sample preparation and PTV-GC/TOFMS analysis can be applied to multi-residue analysis of pesticides in fruits and vegetables.

Evaluation of QuEChERS Method for Determination of pesticide Residues Using GC/NPD and GC/ECD (GC/NPD와 GC/ECD를 이용한 잔류농약 정량 분석법으로써의 QuEChERS의 평가)

  • Cho, Tae Hee;Park, Young Hye;Park, Hye Won;Hwang, Lae Hwong;Cho, In Soon;Kim, Min Jung;Kim, Hyun Jeong;Kim, Mu Sang;Chae, Young Zoo
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • The modified QuEChERS method was evaluated for rapid determination of pesticide residues in spinach by gas chromatography-nitrogen phosphorous detector (NPD) and electron capture detector (ECD). Fifty GC-amenable pesticides which were most frequently detected in monitoring were selected in the current study. Matrix-matched calibration was performed. The detector response for all pesticides was linear with determination coefficients higher than 0.995. LODs for most compounds ranged between 0.001 and 0.1 ug/g, and about 90% of the compounds had LODs of less than 0.05 ug/g. LOQs ranged from 0.001 to 0.32 ug/g, which were well below the MRLs permitted for most of pesticides. In the majority of cases, the recoveries (80-120%) and relative standard deviations (RSDs) (less than 20%) were within acceptable levels except for dichlorvos, propamocarb, chlorothalonil, dichlofluanid, cyhalothrin and fenvalerate. Also, this method which is applied to routine samples showed good results when comparing with traditional multi-residue method.

Residue analysis of spinetoram and spinosad on paprika leaf using the modified QuEChERS pre-treatment methods

  • Kim, Young-Shin;Yang, Jun-Young;Jin, Na-Young;Yu, Yong-Man;Youn, Young-Nam;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.487-494
    • /
    • 2017
  • Spinosad and spinetoram are widely used insecticides for the control of lepidopteran larvae, leaf miners, and thrips; however, they might also have low toxicity toward beneficial insects like bees. Because these pesticides are easily photolyzed by ultraviolet radiation, the QuEChERS method, with its simple pretreatment procedure, is often used for analyzing residues of spinosad and spinetoram. The present study performed a residue analysis using a modified QuEChERS method by pretreating with ammonium salt. The limit of detection (LOD) of the modified method was 0.05 mg/kg and the limit of quantification (LOQ) was 0.25 mg/kg. The coefficient of determination ($R^2$) for the calibration curve was 0.999. Also, we examined any change in the adhesion of spinosad and spinetoram on the plants depending on a spray volume. The adhesion was approximately 70% when the spray volume was increased from 60 L to 120 L per 10 a whereas the adhesion was approximately 37% when the spray volume was increased from 125 L to 250 L. This showed that the amount of adhesion decreased with the higher spray volume. The efficacy result of spinetoram was that over 90% of Frankliniella occidentalis was controlled with the application volume of 125 L per 10 a. Therefore, the result of this study indicates that control of insects is effective and sufficient with a spray volume of 125 L per 10 a in paprika cultivation facilities.

Simultaneous Analysis of Conazole Fungicides in Garlic by Q-TOF Mass Spectrometer Coupled with a Modified QuEChERS Method

  • Bong, Min-Sun;Yang, Si-Young;Lee, Seung-Ho;Seo, Jung-Mi;Kim, In-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.323-329
    • /
    • 2011
  • BACKGROUND: The conazoles, difenoconazole, diniconazole, hexaconazole, penconazole and tetraconazole are a large class of synthetic fungicides used extensively for foliage and seed treatments in agricultural crops. The extensive use of conazoles has brought concerns on the potentiality of environmental contamination and toxicity. Thus studies on the development of methods for monitoring the conazoles are required. METHODS AND RESULTS: A modified quick, easy, effective, rugged and safe (QuEChERS) method was involved in sample preparation. Quadrapole time of flight mass spectrometer (Q-TOF MS) in electron spray ionization (ESI) mode was employed to determine conazoles in garlic samples. The limit of detection (LOD) and limit of quantification (LOQ) of conazoles by Q-TOF-MS ranged from 0.001 to 0.002 mg/L and 0.002 to 0.005 mg/L, respectively. Q-TOF-MS analysis exhibited less than 2.6 ppm error of accurate mass measurements for the detection of conazoles spiked at 0.05 mg/L in garlic matrix. Recovery values of conazoles fortified in garlic samples at 0.02, 0.05 and 0.1 mg/L were between 79.2 and 106.2% with a maximum 11.8% of standard deviation. No detectable conazoles were found in the domestic market samples by using the Q-TOF-MS method. CONCLUSION(s): High degree of confirmation for conazoles by accurate mass measurements demonstrated that Q-TOF-MS analysis combined with a QuEChERS method may be applicable to simultaneous determination of conazoles in garlic samples.

Evaluation of Total Residues of Imidacloprid in Livestock Products from Domestic Markets by using a Simultaneous Analytical Method Based on QuEChERS (QuEChERS 기반 동시분석법을 이용한 국내 유통 축산물 중 Imidacloprid 총잔류량 평가)

  • Seung Won Lee;Ji Hyun Yoon;Ji Yu Kim;Da Jung Lim;Hyung Wook Jo;Joon Kwan Moon;Hye-Min Gwak;Hee-Ra Chang;In Seon Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.220-230
    • /
    • 2023
  • Imidacloprid is a neonicotinoid insecticide widely used for insect control in a variety of crops. The evaluation of imidacloprid total residues in animal feeds derived from crop by-products is required to ensure the safety of livestock products. We performed simultaneous LC/MS/MS analyses of imidacloprid and its metabolites in five different livestock products including beef, pork, chicken, milk and egg from domestic markets. The methods for sample preparation and instrumental analysis were established by modifying QuEChERS method to meet the Codex guidelines. The methods generated 0.0035 mg/kg of the limit of determination (LOD), 0.01 mg/kg of the limit of quantitation (LOQ) and standard calibration linearity with >0.983 of the coefficients of determination (R2). The methods exhibited the recovery values of imidacloprid and its metabolites ranging from 65.66 to 119.27% without any interference between matrices. Imidacloprid total residues in the livestock products were found as values lower than the LOQ and maximum residue limits (MRLs). This study suggests that the methods are successfully applicable for the safety evaluation of imidacloprid total residues in livestock products from domestic markets.

Analysis of Systemic Pesticide Imidacloprid and Its Metabolites in Pepper using QuEChERS and LC-MS/MS (QuEChERS 전처리와 LC-MS/MS를 이용한 고추 중 침투성농약 Imidacloprid 및 대사물질 동시분석법)

  • Seo, Eun-Kyung;Kim, Taek-Kyum;Hong, Su-Myeong;Kwon, Hye-Yong;Kwon, Ji-Hyung;Son, Kyung-Ae;Kim, Jang-Eok;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.264-270
    • /
    • 2013
  • Imidacloprid is a systemic insecticide which act as an insect neurotoxin. It used for control of pest such as aphids and other sucking insects in fruits and vegetables. Systemic pesticides move inside a crop following absorption by the plant, and these were converted into a variety of metabolites. Sometimes these metabolites make a problem about safety of agricultural products. So a simultaneous determination method of pesticide and its metabolites is needed, to monitor their presence in agricultural product and study on the fate of pesticide in a plant. This study's aim is to investigate simultaneous analysis method of imidacloprid and its metabolites, imidacloprid guanidine, imidacloprid olefin, imidacloprid urea, and 6-chloronicotinic acid in red pepper using QuEChERS method and LC-MS/MS systems. QuEChERS method was modifed beacuase $MgSO_4$ salts decreased the recoveries of 6-chloronicotinic acid in extraction procedure. Imidacloprid and its metabolites were extracted by acetonitrile with 1% glacial acetic acid and the extracts were purified through QuEChERS with primary secondary amine (PSA) and $C_{18}$ and analyzed with LC-MS/MS in ESI positive mode. Standard calibration curves were made by matrix matched standards and their correlation coefficients were higher than 0.999. Recovery studies were carried out on spiked pepper blank sample at four concentration levels (0.01, 0.04 and 0.1, 0.4 mg/kg). The average recoveries of imidacloprid and its metabolites were in the range of 70~120% with < 20% RSD. This result indicated that the method using QuEChERS and LC-MS/MS was suitable for the simultaneous determination of imidacloprid and its metabolites in red pepper.