DOI QR코드

DOI QR Code

Evaluation of Total Residues of Imidacloprid in Livestock Products from Domestic Markets by using a Simultaneous Analytical Method Based on QuEChERS

QuEChERS 기반 동시분석법을 이용한 국내 유통 축산물 중 Imidacloprid 총잔류량 평가

  • Seung Won Lee (Department of Agricultural and Biological Chemistry, Chonnam National University) ;
  • Ji Hyun Yoon (Department of Agricultural and Biological Chemistry, Chonnam National University) ;
  • Ji Yu Kim (Department of Agricultural and Biological Chemistry, Chonnam National University) ;
  • Da Jung Lim (Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Hyung Wook Jo (Department of Plant Life and Environmental Sciences, Hankyong National University) ;
  • Joon Kwan Moon (Department of Plant Life and Environmental Sciences, Hankyong National University) ;
  • Hye-Min Gwak (Department of Pharmaceutical Engineering, Hoseo University) ;
  • Hee-Ra Chang (Department of Pharmaceutical Engineering, Hoseo University) ;
  • In Seon Kim (Department of Agricultural and Biological Chemistry, Chonnam National University)
  • 이승원 (전남대학교 농생명화학과) ;
  • 윤지현 (전남대학교 농생명화학과) ;
  • 김지유 (전남대학교 농생명화학과) ;
  • 임다정 (농축산용미생물산업육성지원센터) ;
  • 조형욱 (한경국립대학교 식물자원조경학부) ;
  • 문준관 (한경국립대학교 식물자원조경학부) ;
  • 곽혜민 (호서대학교 제약공학과) ;
  • 장희라 (호서대학교 제약공학과) ;
  • 김인선 (전남대학교 농생명화학과)
  • Received : 2023.07.19
  • Accepted : 2023.09.07
  • Published : 2023.09.30

Abstract

Imidacloprid is a neonicotinoid insecticide widely used for insect control in a variety of crops. The evaluation of imidacloprid total residues in animal feeds derived from crop by-products is required to ensure the safety of livestock products. We performed simultaneous LC/MS/MS analyses of imidacloprid and its metabolites in five different livestock products including beef, pork, chicken, milk and egg from domestic markets. The methods for sample preparation and instrumental analysis were established by modifying QuEChERS method to meet the Codex guidelines. The methods generated 0.0035 mg/kg of the limit of determination (LOD), 0.01 mg/kg of the limit of quantitation (LOQ) and standard calibration linearity with >0.983 of the coefficients of determination (R2). The methods exhibited the recovery values of imidacloprid and its metabolites ranging from 65.66 to 119.27% without any interference between matrices. Imidacloprid total residues in the livestock products were found as values lower than the LOQ and maximum residue limits (MRLs). This study suggests that the methods are successfully applicable for the safety evaluation of imidacloprid total residues in livestock products from domestic markets.

Keywords

Acknowledgement

This work was funded by the Ministry of Food and Drug Safety (Grants 21162MFDS366) of Republic of Korea.

References

  1. OECD/FAO (2022) OECD agriculture statistics (database). OECD-FAO Agricultural Outlook, 2022-2031, 10. https://doi.org/10.1787/agr-outl-data-en. 
  2. Charles H, Godfray J, Aveyyard P, Garnett T, Ha JW, Key TJ, Lorimer J, Pierrehymbert RT, Scarborough P, Springmann M et al. (2018) Meat consumption, helath, and the environment. Science, 361, 1-8. https://doi.org/10.1126/science.aam5324. 
  3. Jeong MK, Seo HS, Suh DJ, Kim JH, Kim JH (2022) Trends and Prospects of Agriculture and Farm Economy, in: Korea Rural Economic Institute. Agricultural Outlook 2022, pp. 1-36, Agricultural Outlook, Korea. 
  4. Bedi JS, Gill JPS, Kaur P, Aulakh RS (2018) Pesticide residues in milk and their relationship with pesticide contamination of feedstuffs supplied to dairy cattle in Punjab (India). Journal of Animal and Feed Sciences, 27, 18-25. https://doi.org/10.22358/jafs/82623/2018. 
  5. Kumar A, Thakur A, Sharma V, Koundal S (2019) Pesticide residues in animal feed: Status, safety, and scope. Journal of Animal Feed Science and Technology, 7, 73-80. https://doi.org/10.21088/jafst.2321.1628.7219.3. 
  6. Nag SK, Raikwar MK (2011) Persistent organochlorine pesticide residues in animal feed. Environmental Monitoring and Assessment, 174, 327-335. https://doi.org/10.1007/s10661-010-1460-1. 
  7. Li Z, Xiong J, Fantke P (2022) Screening of pesticide distributions in foods of animal origin: a matrix-based approach for biotransfer factor modeling of grazing mammals. Environmental Science Processes and Impacts, 24, 609-624. https://doi.org/10.1039/d1em00454a. 
  8. Penagos-Tabares F, Sulyok M, Faas J, Krska R, Khiaosaard R, Zebeli Q (2022) Residues of pesticides and veterinary drugs in diets of dairy cattle from conventional and organic farms in Austria. Environmental Pollution, 316, 120626. https://doi.org/10.1016/j.envpol.2022.120626. 
  9. Kim HS, Kim M, Kim EJ, Choe W (2020) Determination of 66 pesticide residues in livestock products using QuEChERS and GC-MS/MS. Food Science and Biotechnology, 29, 1573-1586. https://doi.org/10.1005/s10068-020-00798-4. 
  10. Kanda M, Nakajima T, Hayashi H, Hashimoto T, Kanai S, Nagano C, Matsushima Y, Tateishi Y, Yoshikawa S, Tsuruoka Y et al. (2015) Multi-residue determination of polar veterinary drugs in livestock and fishery products by liquid chromatography tandem mass spectrometry. Journal of AOAC International, 98, 230-247. https://doi.org/10.5740/jaoacint.13-272. 
  11. Lee S, Kwak S, Sarker A, Moon J, Kim J (2022) Optimization of a multi-residue analytical method during determination of pesticides in meat products by GC-MS/MS. Foods, 11, 2930. https://doi.org/10.3390/foods11192930. 
  12. Mandal S, Poi R, Ansary I, Hazra DK, Bhattacharyya S, Karmakar R (2020) Validation of a modifed QuEChERS method to determine multiclass multi-pesticide residues in apple, banana and guava using GC-MS and LC-MS/MS and its application in real sample analysis. SN Applied Sciences, 2, 188. https://doi.org/10.1007/s42452-020-1990-2. 
  13. Codex Alimentarius. Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals CAC/GL 71. 2009. Available online: http://www.fao.org/im-put/download/standards/11252/CXG_071e_2014.pdf (accessed on 2 August 2023). 
  14. Ko A, Kim H, Do JA, Jang J, Lee EH, Ju YJ, Kim JY, Chang M, Rhee S (2016) Development of analytical method for determination of spinetoram residues in livestock using LC-MS/MS. Analytical Science and Technology, 29, 94-103. https://doi.org/10.5806/AST.2016.29.2.94. 
  15. Jeong YH, Jo BH, Choi WJ, Lee SM, Do JA, Lee JM, Mo Ej, Lee SB, Jo SM et al. (2018) Monitoring of pesticide residues in agro-livestock products, in: National Institute of Food and Drug Safety Evaluation, Monitoring of Pesticide Residues in Agro-Livestock Products-2018, pp. 1-197, Ministry of Food and Drug Safety, Korea. https://doi.org/10.23000/TRKO201900003465. 
  16. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. TRENDS in Pharmacological Sciences, 22, 573-580. https://doi.org/10.1016/s0165-6147(00)01820-4. 
  17. Bhatta OP, Chand S, Chand H, Poudel RC, Lamichhane RP, Singh K, Subedi N (2023) Imidacloprid poisoning in a young female: a case report. Journal of Medical Case Reports, 17(43). https://doi.org/10.1186/s13256-022-03742-8. 
  18. Rogers KH, McMillin S, Olstad J, Poppenga R (2019) Imidacloprid poisoning of songbirds following drench application of trees in a residential neighborhood in California, USA. Environmental Toxicology and Chemistry, 38, 1724-1727. https://doi.org/10.1002/etc.4473. 
  19. Anastassiades M, Lehotay SJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal of AOAC International, 86, 412-431. https://doi.org/10.1093/jaoac/86.2.412. 
  20. Wang J, Xu J, Ji X, Wu H, Yang H, Zhang H, Zhang X, Li Z, Ni X, Qian M (2020) Determination of veterinary dug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1617, 460808. https://doi.org/10.1016/j.chroma.2019.460808 
  21. Ministry of Food and Drug Safety. Korean Food Code. 2020. Available online: https://www.foodsafetykorea.go.kr/foodcode/01_01.jsp?idx= 263 (accessed on 2 August 2023). 
  22. Anhalt JC, Moorman TB, Koskinen WC (2008) Degradation and sorption of imidacloprid in dissimilar surface and surface soils. Journal of Environmental Science and Health, Part B, 43, 207-213. https://doi.org/10.1080/03601230701771107. 
  23. Kim C-H, Kim C (2023) Determination of hazardous residues in livestock products using LC-MS/MS in Gyeongsang province. Journal of Veterinary Nursing, 2, 11-20. https://doi.org/10.56878/jvn.2023.2.1.11. 
  24. Taylor MJ, Melton LM, Sharp EN, Watson JE (2013) A liquid chromatography-electrospray tandem mass spectrometry method for the determination of multiple pesticide residues involved in suspected poisoning of non-target vertebrate wildlife, livestock and pets. Analytical Methods, 5, 248. https://doi.org/10.1039/c2ay25555c. 
  25. Witczak A, Abdel-Gawad H (2014) Assessment of health risk from organochlorine pesticides residues in high-fat spreadable foods produced in Poland. Journal of Environmental Science and Health, Part B, 49, 917-928. https://doi.org/10.1080/03601234.2014.951574. 
  26. Hamidi A, Yaqubi G, Ahmed SR, Aziz N (2017) Assessment of human health risk associated with the presence of pesticides in chicken eggs. Food Science and Technology, 37, 378-382. https://doi.org/10.1590/1678-457X.11616. 
  27. Philip SW, Odongo VM, Wandiga SO, Omayio DG, Okumu MO (2022) Estimation and human health risk assessment of organochlorine and organophosphate pesticide residues in raw milk collected in Kenya. Food Research, 11, 1-14, https://doi.org/10.12688/f1000research.74748.1. 
  28. Song NE, Lee JY, Ahmad RM, Jang HW, Lim MC, Lee Y, Yoo M, Nam TG (2019) Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chemistry, 298, 125050. https://doi.org/10.1016/j.foodchem.2019.125050. 
  29. Weng R, Loua S, Pangb X, Songa Y, Sub X, Xiaoc Z, Qiua J (2020) Multi-residue analysis of 126 pesticides in chicken muscle by ultra-highꠓperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry, 309, 25503. https://doi.org/10.1016/j.foodchem.2019.125503. 
  30. Huang Y, Huang Y-M, Lee H-J (2020) Simultaneous analysis of seven neonicotinoids in commercial milk samples using an UHPLC-MS/MS method. Applied Sciences, 10, 6775. https://doi:10.3390/app10196775. 
  31. Hajrulai‑Musliu Z, Uzunov R, Jova S, Pendovski L, Sasanya JJ (2022) A new LC-MS/MS method for multiple residues/contaminants in bovine meat BMC Chemistry, 15, 62. https://doi.org/10.1186/s13065-021-00788-5.