• Title/Summary/Keyword: QoS control method

Search Result 226, Processing Time 0.026 seconds

Control Signal Transmission Scheme Using OFDM PTS Embedded Side Information in Cognitive Radio System (무선 인지 시스템에서 OFDM PTS 임베디드 부가정보를 이용한 제어신호 전송 기법)

  • Jeong, Bong-Min;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.75-83
    • /
    • 2011
  • Wireless services and devices that use frequency increase more and more because of advancement of the industry. Therefore, the available spectrum band becomes increasingly insufficient. Cognitive Radio, which adaptively utilizes the vacant licensed spectrum band, is considered as an effective way to utilize the spectrum resource shortage. CR user should move from current allocated channel to vacant channel to avoid the interference to the primary user when the primary user appears in the current channel. In this case, CR system undergoes the break off time until handshake is completed. So, in order to guarantee the Quality of Service(QoS) of CR system, fast handshake method is required. In this paper, we propose the embedded control signal transmission technique to reduce the break off time. This method can transmit the control signals in data transmission period as well as the broadcasting period. Proposed method can improve the data throughput and decrease the break off time. Computer based simulation proves that our proposed scheme outperforms conventional one.

The Efficient Bandwidth Control Method for Variable Data using ATM-GFR Service (ATM-GFR 서비스를 이용한 가변 데이터의 효과적인 대역폭 관리)

  • Kim Jung-Gyu;Lee Young-Dong
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.129-138
    • /
    • 2001
  • With the explosive growth and pervasive of the Internet, dynamic bandwidth allocation is nessary for ATM streams that carry various traffic. In order to provide quality of service(QoS) guarantees and to give the minimum cell rate, new bandwidth allocation scheme requires to be implemented. DFBA(Differential Fair Buffer Allocation) scheme is one of the methods for ATM GFR(Guaranteed Frame Rate) services. DFBA scheme treats cells selectively in a region between low buffer occupancy threshold and high buffer occupancy threshold. A big unbalance is introduced when the value being selected by DFBA scheme is greater than minimum rate. In a try to reduce the unbalance modified DFBA scheme is proposed. Selecting parameter according to the situation of network, this scheme is very effective to control the bandwidth in the various network situation.

  • PDF

The Design of TC with WFQ for Effective Resource Sharing on Differentiated Service (Differentiated Service에서 공정한 자원 공유를 위한 WFQ 적용 TC 설계)

  • 장경성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.31-40
    • /
    • 2004
  • Diff-Serv(DS) is a mechanism by which network service providers can offer differing levels of network service to different traffic, in so providing quality of service(QoS) to their customers. Because this mechanism has been deployed just for fixed hosts with the Token Bucket mechanism according to AggF(Aggregate Flow) instead of each flow, DS can not suggest effective usability of traffic resources. In this paper, we use WFQ mechanism for traffic conditioner and scheduling method monitoring the AggF and the results will be used to control the next flows coming in TC. So it will control traffic rate dynamically and suggest efficient usability of bandwidth.

The study for enhancing new call service in mobile communication system (이동통신 시스템 기반 신규 호 서비스 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.85-94
    • /
    • 2005
  • In this thesis, we propose a Speed Accommodation Priority Algorithm Scheme(SPAS) and Traffic Control Model Scheme (TCMS) to satisfy a desired handoff dropping probability and to reduce the blocking probability of new calls using mobility characteristics and handoff rate in mobile communication networks. The guard channels below threshold can guarantee the Quality of Service(QoS) in terms of the request handoff dropping probability and the guard channels above the threshold can be used to handle high priority new calls and high priority handoff calls. When the ratio of the handoff call arrival rate is less then the ratio of the new call arrival rate, the proposed method can guarantee the new call better than the previous guard channel scheme.

Power Control in RF Energy Harvesting Networks (무선 에너지 하비스팅 네트워크에서의 전력 제어 기법)

  • Hwang, Yu Min;Shin, Dong Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2017
  • This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.

Small Base Station Association and Cooperative Receiver Design for HetNets via Distributed SOCP

  • Lu, Li;Wang, Desheng;Zhao, Hongyi;Liu, Yingzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5212-5230
    • /
    • 2016
  • How to determine the right number of small base stations to activate in multi-cell uplinks to match traffic from a fixed quantity of K users is an open question. This paper analyses the uplink cooperative that jointly receives base stations activation to explore this question. This paper is different from existing works only consider transmitting power as optimization objective function. The global objective function is formulated as a summation of two terms: transmitting power for data and coordinated overhead for control. Then, the joint base stations activation and beamforming problem is formulated as a mixed integer second order cone optimization. To solve this problem, we develop two polynomial-time distributed methods. Method one is a two-stage solution which activates no more than K small base stations (SBSs). Method two is a heuristic algorithm by dual decomposition to MI-SOCP that activates more SBSs to obtain multiple-antennae diversity gains. Thanks to the parallel computation for each node, our methods are more computationally efficient. The strengths and weaknesses of these two proposed two algorithms are also compared using numerical results.

An Energy Efficient Cluster Management Method based on Autonomous Learning in a Server Cluster Environment (서버 클러스터 환경에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법)

  • Cho, Sungchul;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.185-196
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(Quality of Service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to let only the minimum number of servers needed to handle current user requests ON. Previous studies on energy aware server cluster put efforts to reduce power consumption further or to keep QoS, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management based on autonomous learning for energy aware server clusters. Using parameters optimized through autonomous learning, our method adjusts server power mode to achieve maximum performance with respect to power consumption. Our method repeats the following procedure for adjusting the power modes of servers. Firstly, according to the current load and traffic pattern, it classifies current workload pattern type in a predetermined way. Secondly, it searches learning table to check whether learning has been performed for the classified workload pattern type in the past. If yes, it uses the already-stored parameters. Otherwise, it performs learning for the classified workload pattern type to find the best parameters in terms of energy efficiency and stores the optimized parameters. Thirdly, it adjusts server power mode with the parameters. We implemented the proposed method and performed experiments with a cluster of 16 servers using three different kinds of load patterns. Experimental results show that the proposed method is better than the existing methods in terms of energy efficiency: the numbers of good response per unit power consumed in the proposed method are 99.8%, 107.5% and 141.8% of those in the existing static method, 102.0%, 107.0% and 106.8% of those in the existing prediction method for banking load pattern, real load pattern, and virtual load pattern, respectively.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.

A Study on Performance Evaluation based on Packet Dropping in ATM Network . New Scheme Proposal

  • Park, Seung-Seob;Yuk, Dong-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.283-288
    • /
    • 2003
  • Recently, the growth of applications and services over high-speed Internet increases, ATM networks as wide area back-bone has been a major solution. As the conventional TCP/IP suite is still the standard protocol used to support upper application on current. Internet, the issues regarding whether TCP/IP will operate efficiently on top of an ATM infrastructure and how to control its QoS still remain for studies. TCP uses a window-based protocol for flow control in the transport layer. When TCP uses the UBR service in ATM layer, the control method is only buffer management. If a cell is discarded in ATM layer, one whole packet of TCP will be lost; this fact occur the most TCP performance degradation. Several dropping strategies, such as Tail Drop, EPD, PPD, SPD, FBA, have been proposed to improve the TCP performance over ATM. In this paper, to improve the TCP performance, we propose a packet dropping scheme that is based on comparison with EPD, SPD and FBA. Our proposed scheme is applied to schemes discussed in the previous technology. Our proposed scheme does not need to know each connection's mean packet size. When the buffer exceeds the given threshold, it is based on comparison between the number of dropped packet and the approved packet. Our results are reported and discussed for comparing these discarding schemes under similar conditions. Although the number of virtual channel (VC) is increased, the simulation results showed that the proposed scheme can allocate more fairly each VC than other scheme.

An Admission Control for End-to-end Performance Guarantee in Next Generation Networks (Next Generation Networks에서의 단대단 성능 보장형 인입제어)

  • Joung, Jin-Oo;Choi, Jeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1141-1149
    • /
    • 2010
  • Next Generation Networks (NGN) is defined as IP-based networks with multi-services and with multi-access networks. A variety of services and access technologies are co-existed within NGN. Therefore there are numerous transport technologies such as Differentiated Services (DiffServ), Multi-protocol Label Switching (MPLS), and the combined transport technologies. In such an environment, flows are aggregated and de-aggregated multiple times in their end-to-end paths. In this research, a method for calculating end-to-end delay bound for such a flow, provided that the information exchanged among networks regarding flow aggregates, especially the maximum burst size of a flow aggregate entering a network. We suggest an admission control mechanism that can decide whether the requested performance for a flow can be met. We further verify the suggested calculation and admission algorithm with a few realistic scenarios.