• Title/Summary/Keyword: QRS

Search Result 264, Processing Time 0.03 seconds

QRS Recognition Using Attribute Grammar Interpreter (어트리뷰트 그래머 인터프리터를 이용한 QRS 인식)

  • 이병채;남승우
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 1991
  • This paper presents a QRS recognition algorithm using attribute grammar and its interpreter. This system extracts primitive and their attributes by linear approximation technique and then represented linguistic formation using attribute grammar. These nonterminals and their attributes are evaluated by attribute grammar interpreter. The performance of the QRS recognition algorithm has been evaluated using arrhythmia simulator and CSE ECG library.

  • PDF

QRS Detection based on Maximum A-Posterior Estimation (MAP Estimation을 이용한 QRS Detection)

  • 정희교;신건수
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-214
    • /
    • 1987
  • In this paper, a mathmatical model for the purpose of QRS detection is considered in the case of the occurence of nonoverlappjng pulse-shaped waveforms corrupted with white noise. The number of waveform, the arrival times, amplitudes, and widths of QRS complexes are regarded as random variables. The joint MAP estimation of all the unknown Quantities consists of linear filtering followed by an optimization procedure. Because the optimization procedure is time-consuming, this procedure is modified so that a threshold test is obtained.

  • PDF

A Digital Filter for the Qrs Complex Detection Based-on Microcomputer (마이크로 컴퓨터를 이용한 QRS파형 검출용 디지탈필터)

  • 신건수
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.173-182
    • /
    • 1984
  • This paper represents a algorithm which improves the some drawbacks in the past methods for detecting QRS Complex waves. This proposed algorithm is very useful to detect correctly QRS Complex not only in a normal ECG, but in the abnormal ECG such as contaminating the noise with high amplitude, the existence of sharp T wave, and abrupt stepwise fluctuation of the base line.

  • PDF

우리나라 의용생체공학의 현황과 전망

  • 이충웅
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 1989
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Development of a Stress ECG Analysis Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 스트레스 심전도 분석 알고리즘의 개발)

  • 이경중;박광리
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-278
    • /
    • 1998
  • This paper describes a development of efficient stress ECG signal analysis algorithm. The algorithm consists of wavelet adaptive filter(WAF), QRS detector and ST segment detector. The WAF consists of a wavelet transform and an adaptive filter. The wavelet transform decomposed the ECG signal into seven levels using wavelet function for each high frequency bank and low frequency bank. The adaptive filter used the signal of the seventh lowest frequency band among the wavelet transformed signals as primary input. For detection of QRS complex, we made summed signals that are composed of high frequency bands including frequency component of QRS complex and applied the adaptive threshold method changing the amplitude of threshold according to RR interval. For evaluation of the performance of the WAF, we used two baseline wandering elimination filters including a standard filter and a general adaptive filter. WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of results of QRS complex detection, we compared our algorithm with existing algorithms using MIT/BIH database. Our algorithm using summed signals showed the accuracy of 99.67% and the higher performance of QRS detection than existing algorithms. Also, we used European ST-T database and patient data to evaluate measurement of the ST segment and could measure the ST segment adaptively according to change of heart rate.

  • PDF

Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification (조기심실수축 분류를 위한 위상 변이 추적 기반의 QRS 특징점 검출)

  • Cho, Ik-sung;Yoon, Jeong-oh;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.427-436
    • /
    • 2016
  • In general, QRS duration represent a distance of Q start and S end point. However, since criteria of QRS duration are vague and Q, S point is not detected accurately, arrhythmia classification performance can be reduced. In this paper, we propose extraction of Q, S start and end point RS feature based on phase transition tracking method after we detected R wave that is large peak of electrocardiogram(ECG) signal. For this purpose, we detected R wave, from noise-free ECG signal through the preprocessing method. Also, we classified QRS pattern through differentiation value of ECG signal and extracted Q, S start and end point by tracking direction and count of phase based on R wave. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 99.60%. PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction(PVC). The achieved scores indicate the average detection rate of 94.12% in PVC.

PVC Detection Based on the Distortion of QRS Complex on ECG Signal (심전도 신호에서 QRS 군의 왜곡에 기반한 PVC 검출)

  • Lee, SeungMin;Kim, Jin-Sub;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.731-739
    • /
    • 2015
  • In arrhythmia ECG signal, abnormal beat that has various abnormal shape depending on the generation site and conduction disorders is included and it is very important to diagnose heart disease such as arrhythmia. In this paper, we propose a PVC abnormal beat detection algorithm associated with ventricular disease. The PVC abnormal beat is characterized by distortion of the QRS complex occurs among the components of the ECG signal. Therefore it is possible to detect PVC abnormal beat according to the degree of distortion of the QRS complex. First, quantify the distortion of the QRS complex by using the potential of the R-peak, kurtosis and period. By using the mean and standard deviation, PVC abnormal beat is detected depending on the degree of distortion from the normal beat. The proposed algorithm can detect the average over 98% of the AAMI-V class type abnormal beat associated with ventricular disease in MIT-BIH arrhythmia database.

Pattern Classification of the QRS-complexes Using Relational Correlation (관계상관식을 이용한 QRS 패턴분류)

  • Hwang, Seon-Cheol;Jeong, Hee-Kyo;Shin, Kun-Soo;Lee, Byung-Chae;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.428-431
    • /
    • 1990
  • This paper describes a pattern classification algorithm of QRS-complexes using significant point detection for extracting features of signals. Significant point extraction was processed by zero-crossing method, and decision function based on relational spectrum was used for pattern classification of the QRS-complexes. The hierarchical AND/OR graph was obtained by decomposing the signal, and by use of this graph, QRS's patterns were classified. By using the proposed algorithm, the accuracy of pattern classification and the processing speed were improved.

  • PDF

An Algorithm to Detect QRS Complex and R-wave Using Wavelet Filter (Wavelet filter를 이용한 QRS complex와 R-wave의 검출 알고리듬)

  • 태장환;송인호;이두수;김선일;김인영
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.483-486
    • /
    • 2000
  • 심전도에서 QRS complex와 R-wave의 검출은 부정맥 진단, 심전도의 특성점 검출 기준, heart rate variability(HRV) 측정에 있어서 중요하나, 시시각각 변화하는 생리적 변화와 여러 가지 노이즈로 인해 검출이 쉽지 않다 제안된 알고리듬에서는 wavelet filter banks를 이용하여 대칭적 enhanced 신호와 noise 와 같은 very high frequency 성분이 제거된 ECG에 근사화 된 approximated 신호를 얻는다. Enhanced 신호로부터 QRS complex의 위치를 검출하고, 검출된 위치의 주변에서 대칭적 wavelet의 특성이 반영된 dominant한 peak의 위치정보, 즉 R wave의 후보점을 얻는다. 이 위치 정보를 이용하여 enhanced 신호에서 각 peak에서의 크기, approxi-mated 신호에서 각 peak 주변에서의 기울기 변화, 기울기 부호 등을 고려하여 R-wave의 위치를 원래의 ECG 신호에서 얻는다. MIT/BIH database에 적용한 결과 99.6%의 QRS complex검출률과 92.9%의 R-wave 검출률을 보였다.

  • PDF

A Study on Determination of Frontal QRS Electrical Axis by Minnesota Coding Method (MINNESOTA CODE 분류방식에 의한 전면 QRS 전기축 판정에 관한 연구)

  • Park, Dong-Chan;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.421-425
    • /
    • 1989
  • This paper present a algorithm for determination of the frontal QRS axis. Determination of electrical QRS axis helps In the differential diagnosis of wide QRS tachycardia and of hemiblock and In the localization of an accessory pathway. At first detecting R-point data and S-point data and two data is sumed and this data is determind such as positive or negative. Reference data is calculated by 9-point derivertives that is less affected by noise. Secondly, using data of lead2 calculate a morphology, this value is threshold for executing determination algorithm. This process is main body of this algorithm. As this algorithm have a six pattern of the axis that coded by minnesota ending method, the axis is determined more precisely than any other algorithm using 3 leads and affirm a relation of a axis and hemiblock and tachycardia.

  • PDF