• Title/Summary/Keyword: QRA

Search Result 74, Processing Time 0.032 seconds

Review on the detailed standards for Quantitative Risk Analysis in High Speed Railway Tunnels (고속철도 터널의 정량적 위험도 분석(QRA)을 위한 세부기준에 관한 고찰)

  • Choi, Won-Il;Choi, Jeong-Hwan;Moon, Yeon-Oh;Kim, Seon-Hong;Yoo, Ho-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.393-407
    • /
    • 2008
  • To protection of fire accident and to minimize danger of spreading the disaster. in railway tunnel, MCT (the Ministry of Construction and Transportation) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". QRA(Quantitative Risk Analysis) results are applied to establish the fire protection facilities in railway tunnel so that institute the reasonable application about the fire safety facilities However, it is difficult to perform the fire safety design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the practical method about detailed standards of QRA.

A Study on the Accident Consequences of High Pressure Pipelines by Applying Reduction Factors (감소인자 적용에 따른 고압가스배관의 사고피해영향에 관한 연구)

  • Lee, Dong Hyuck;Jung, Sang Yong;Ko, Sang Wook;Kim, Min Seop;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2012
  • It becomes a more and more common practice to build facilities bigger and more integrated in an effort to optimize the process within limited resources and spaces. As the capacity of facilities increases, so does the flow rate and pressure. This in turn leads to a high consequence of accident. Not only are these facilities vulnerable to leakage because of their high pressure, but also subsequent fire and explosion can be threatening. For these reasons, there is an urgent need to come up with solutions to assess and minimize the damage from an accident. The Quantitative Risk Assessment(QRA) is one of the most efficient ways to solve problems on pressurized pipelines. The QRA can be re-enforced by applying reduction factors. In this study various types of accidents in a pressurized pipeline were evaluated. The damage from accidents were computed, then. Finally the reduction factors were very effective to decrease consequences of high pressure pipeline accidents.

A Study on Safety Guidelines for Hydrogen Refueling Stations at Expressway Service Area using Quantitative Risk Assessment (정량적 위험성 평가를 통한 고속도로 휴게소 수소 충전소 안전 가이드라인 연구)

  • KIM, HEE JIN;JANG, KYEONG MIN;KIM, SOO HYEON;KIM, GI BEOM;JUNG, EUN SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.551-564
    • /
    • 2021
  • The use of clean energy based on the hydrogen economy is increasing rapidly due to the greenhouse gas reduction policies and the increase in the need for hydrogen. Currently, South Korea government have been considering a plan to construct hydrogen refueling stations at expressway service area for the purpose of supplying hydrogen vehicles. In the case of a hydrogen refueling stations, a quantitative risk assessment (QRA) must be performed because it includs and uses a high pressurized hydrogen storage tank. In this study, QRA was conducted using societal risk and F-N curve by the consequence assessment (CA) of jet fire and explosion according to the population density, capacity of the high pressurized hydrogen storage tank and frequency assessment (FA) data to the general hydrogen refueling stations systems in expressway service area. In the cases of jet with a leak diameter of 7.16 mm, regardless of expressway service area location, the societal risk was over 1E-04 that was acceptable for as Low As reasonably practicable (ALARP) region (workforce), but unacceptable for ALARP region (public). In the cases of gas explosion, all expressway service area satisfy ALARP region. In the case of the population density is over 0.0727, QRA for constructing the hydrogen refueling stations, must be conducted.

A Study on Quantitative Risk Assessment of Off-gas based Hydrogen Purification Facilities (부생가스 기반 수소 정제시설의 정량적 위험성 평가에 관한 연구)

  • Hyun-Gook Shin;Min-Joo Kim;Ji-Woon Jeong;Sang-Jun Ha;Jong-Ho Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.110-115
    • /
    • 2023
  • According to the Off-Gas Generation and Use Status Report (2015), Off-gas from the steel industry is estimated to be 80 million tons per year in Korea. If this is purified, large amounts of hydrogen can be produced, so active research and development related to hydrogen purification facilities is underway. In this study, a quantitative risk assessment (QRA) was conducted by analyzing the components of a off-gas based hydrogen purification facility and investigating risk factors. The risk analysis results were determined to be at an acceptable level and will be used as basic data to improve the safety of facilities considering the risks of hydrogen.

Case Study on the detailed standard setting and Application for QRA in Honam high speed railway tunnel (호남고속철도터널의 정량적 위험도 분석(QRA)을 위한 세부기준수립 및 적용사례)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Kim, Ki-Lim;Kim, Chan-Dong;Yoo, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.249-260
    • /
    • 2008
  • Although the accident rate is lower than the road tunnel, fire in railway tunnel can bring large damage of human life. In the high speed railway tunnel, the possibility of the railway-disaster (fire) is growing in consideration of the speedy railway and the tunnel length. For that reason, MLTM (Ministry of Land, Transport and Maritime Affairs) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". According to those, QRA(Quantitative Risk Analysis) technique is recommended to be applied to railway tunnel design which is longer than 1km for assuring the safety function and estimating the risk. However, it is difficult to perform the disaster prevention design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the case of tunnel design for disaster prevention of the Honam high speed railway including the detailed standards of QRA and reasonable safety facilities.

  • PDF

Methodologic Issues in Using Epidemiologic Studies for Quantitative Risk Assessment

  • Stayner Leslie
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.417-425
    • /
    • 1994
  • Although animal studies have been used most often for quantitative risk assessment, it is generally recognized that well-conducted epidemiologic studies would provide the best basis for estimating human risk. However, there are several features related to the design and analysis of epidemiologic studies that frequently limit their usefulness for quantitating risks. The lack of accurate information on exposure in epidemiologic studies is perhaps the most frequently cited limitation of these studies for risk assessment. However. other features of epidemiologic study design, such as statistical power, length of follow-up, confounding, and effect modification, may also limit the inferences that can be drawn from these studies. Furthermore, even when the aforementioned limitations are overcome, substantial uncertainty exists concerning the choice of an appropriate statistical (or biologic) model for extrapolation beyond the range of exposures observed in a particular study. This paper focuses on presenting a review and discussion of the methodologic issues involved in using epidemiologic studies for risk assessment. This review concentrates on the use of retrospective, cohort, mortality studies of occupational groups for assessing cancer risk because this is the most common application of epidemiologic data for quantitative risk assessment (QRA). Epidemiologic data should not be viewed as a panacea for the problems inherent in using animal bioassay data for QRA. Rather, information that can be derived from epidemiologic and toxicologic studies complement one another, and both data sources need to be used to provide the best characterization of human risk.

  • PDF

Microbial Risk Assessment (미생물학적 위해성 평가)

  • 이건형
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • Risk assessment defines as the process of estimating both the probability that an event will occur and the probable magnitude of its adverse effects. Chemical or microbial risk assessment generally follows four basic steps, that is, hazard identification, exposure assessment, dose-response assessment, and risk characterization. Risk assessment provides an effective framework for determining the relative urgency of problems and the allocation of resources to reduce risks. Using the results of risk analyses, we can target prevention, reme-diation, or control effects towards areas, sources, or situations in which the greatest risk reductions can be achieved with resources available. Risk assessment is also used to explain chemical and microbial risks as well as ecosystem impacts. Moreover, this process, which allows the quantitation and comparison of diverse risks, lets risk managers utilize the maximum amount of complex information in the decision-making process. This information can also be used to weigh the cost and benefits of control options and to develop standards or treatment options.

  • PDF

A Study on the Processing Method of Reliability Database using 2-Bayes Theory (2-Bayes 이론을 이용한 데이터 처리방법에 관한 연구)

  • Lee, M.S.;Rhie, K.W.;Kim, T.H.;Yoon, I.K.;Oh, Y.D.;Seo, D.H.
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.144-149
    • /
    • 2009
  • The safety assessment for facility industry is now being periodically performed in Korea. For the purpose of scientific safety management, QRA(Quantitative Risk Assessment) is also being performed, and reliability data of the facilities is essential to perform the assessment. The necessary reliability data for QRA have been generally announced the values in other process industries, which results in the drop of risk reliability. The most appropriate method is to perform a direct reliability analysis towards the facilities undergoing safety assessment. In this study, the distinction between homogeneous sample estimation and multi-sample estimation of reliability data clarify using 2-Bayes theory.

Technical Review on the QRA of Railway Safety Facilities (철도 안전 설비의 정량적 위험평가 기술)

  • Choi, Kwon-Hee;Kim, You-Ho;Lee, Jong-Woo;Song, Joong-Ho;Song, Kwang-Yeol
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • The overall goal of a safety based railroad system is either to eliminate hazards in designing or to minimize the possibility of it. In order to indicate system safety or low risk although it may not be possible to achieve zero risk conditions, first, it shall ensure that any disasters would occur due to system operation because the prescribed specifications are properly fulfilled and there are no failures of any kind. Second, the risk of faults or failures leading to a mishap must be eliminated or minimized by using fault-tolerance or fail-safe procedures. This paper will attempt to summarize the personal and social risk criterion at widely scattered points, presently used as a safety approach in all over EU, in order to establish the step by step procedures of the detailed standard for railway facilities. In addition, we present the new safety analysis method using the SIL-based evaluation standard and the Reachability Graph of the Petri Net.