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Although animal studies have been used most often for
quantitative risk assessment, it is generally recognized that
well-conducted epidemiologic studies would provide the best
basis for estimating human risk. However, there are several
features related to the design and analysis of epidemiologic
studies that frequently limit their usefulness for quantitating
risks. The lack of accurate information on exposure in
epidemiologic studies is perhaps the most frequently cited
limitation of these studies for risk assessment. However, other
features of epidemiologic study design, such as statistical
power, length of follow-up, confounding, and effect modifica-
tion, may also limit the inferences that can be drawn from these
studies. Furthermore, even when the atorementioned limita-
tions are overcome, substantial uncertainty exists concerning
the choice of an appropriate statistical (or biologic) model! for
extrapolation beyond the range of exposures gbserved in a
particular study. This paper focuses on presenting a review
and discussion of the methodologic issues invalved in using
epidemiologic studies for risk assessment. This review con-
centrates on the use of retrospective, cohort, mortality studies
of occupational groups for assessing cancer risk because this
is the most common application of epidemiologic data for
quantitative risk assessment (QRA). Epidemiologic data
should not be viewed as a panacea for the problems inherent
in using animal bioassay data for QRA. Rather, information
that can be derived from epidemiologic and toxicologic studies
complement one another, and both data sources need to be
used to provide the best characterization of human risk.

Introduction

Risk assessment is an emerging discipline that involves
the characterization of risks from human exposures to en-
vironmental or occupational hazards: The process has been
defined as having the following four steps: 1) identification
of hazards, 2) exposure assessment, 3) estimation of dose—
response relationships, and 4) the characterization of risk.
The numerical quantification of the risk associated with
human exposures has been %enerally referred to as quantita-
tive risk assessment (QRA). D

To date, most risk assessments have been based upon
analyses of animal bioassay data. Considerable uncertainty
generally surrounds risk estimates derived from analyses of

animal studies because of the need to extrapolate between
species and from the relatively high doses administered to
animals to the relatively low levels of human exposures.

These uncertainties have led some authors to question
the relevance of data from experiments in which animals are
exposed to high doses for predicting human risk® and to
suggest reliance on epidemiologic data for QRA. Other re-
searchers have demonstrated a reasonably strong correlation
between cancer potency estimates derived from assessments
based on toxicologic and epidemiologic data®® supporting
the validity of using animal bioassay data for predicting
human risk.

Despite the uncertainties described above, there will
continue to be a need to perform QRAs based on animal
bioassay data. The altemnative is to wait until greatly im-
proved epidemiologic information is developed, which is
socially unacceptable. Furthermore, because of the nonex-
perimental nature of epidemiologic investigations, data from
these studies have their own Iimitations that may often intro-
duce additional uncertainties into the risk assessment process.
The purpose of this paper is to provide a review of the key
methodologic issues and attendant uncertainties related to the
design and analysis of epidemiologic studies for QRA. This
discussion will primarily focus on the use of retrospective,
cohort, mortality studies of occupational groups for assessing
cancer risk because this is the most common application of
epidemiologic data for QRA.

Study Design

In contrast to experimental studies in animals, the obser-
vational nature of epidemiologic investigations generally in-
troduces numerous sources of uncertainty into the QRA
process. Unlike toxicologists, epidemiologists generally can-
not randomiy assign exposures to the toxic agent under study,
nor can they limit exposures to other potential disease risk
factors that may bias and otherwise distort the relationship
between exposure and disease. Risk assessors need to be
cognizant of the following issues related to the design of
epidemiologic studies, which may introduce substantial un-
certainties into the QRA process.
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Exposure and Dose Estimation

The lack of adequate information on exposure is the most
frequently cited reason for rejecting epidemiologic data as the
basis for QRA. This.is particularly a problem for retrospec-
tive, cohort, mortality studies of occupational groups because
information on levels of exposure is frequently lacking during
the early time periods of these studies. This situation may
improve as companies increase their routine collection of data
on occupational exposures. Considerable progress has also
been made in developing better methods for estimating his-
torical exposures in the workplace.

Even if only crude estimates of exposures are available,
epidemiologic data can still be useful for QRA. At the very
least, if a range of likely exposures can be estimated for an
epidemiologic study, then a range of possible risk estimates
can also be derived from the study. This range of risk es-
timates can then be used to check whether the estimates
derived from an animal-based model appear to be reasonable,
i.e., are they in the range of the possible epidemiologic
estimates.

Ideally, information on doses to the target tissues should
be used for performing QRA using epidemiologic and animal
bioassay data. If the target tissue dose is a linear function of
the external exposure, then use of the external exposure is
appropriate for QRA. However, if one needs to extrapolate
beyond the range of the epidemiologic data, then use of the
external exposure may produce unrealistic estimates of risk
if the relationship between external exposure and target tissue
dose is nonlinear. Moreover, extrapolations from models
based on epidemiologic data may be undermined by
physiologic and other differences within the human popula-
tion unless estimates of dose rather than exposure are used for
the assessment. For example, a mode! based on a study of the
effects of respiratory exposures in a working male population
could not be validly used for predicting risk to a nonworking
female population unless dosimetric adjustments were made
for factors such as differences in ventilation rates.

Direct measurements of target tissue doses will rarely (if
ever) be available in occupational, cohort, mortality studies.
However, physiologically and pharmacologically based
models have recently been applied to the estimation of target
tissue doses to lmprovc extrapolations from animal studies to
predict human risk.® These models may also find applica-
tions for improving risk estimation based on epidemiologic
studies. In addition, biological markers, such as DNA and
protein adducts, may also be useful for estimating at the
molecular level the dose to target tissues in epidemiologic risk
assessments.( "

The potential influence of exposure misclassification on
risk estimates derived from epidemiologic studies is an area
requiring additional investigation. It"is often assumed that
nondifferential misclassification of exposure will result in a
weakening of the dose-response relationship and, thus, an

Chemical Risk Assessment

underestimation of the risk associated with exposures. How-
ever, it has been shown that exposure misclassification may
result in biased risk estimates in either direction.!

Confounding

Perhaps the greatest obstacle toward utilizing
epidemiologic studies for risk assessment is the potential for
confounding by other risk factors. Confounding is the mixing
of effects in which the estimate of the effect of exposure is
distorted by the effect of an extraneous factor.!! In occupa-
tional, cohort, mortality studies, potential confounding fre-
quently exists due to the presence of multiple exposures found
in the workplace or due to differences between the study
population and the referent population in terms of personal
risk factors (e.g., smoking).

Confounding in experimental (i.e., animal) studies is
effectively limited (although not eliminated) by randomiza-
tion of exposure. In nonexperimental (i.e., epidemiologic)
studies in which randomization of exposure is not performed,
confounding varfiables may not be randomly distributed be-
tween the exposed and nonexposed groups. Although the
influence of measured confounders may be controlled for in
the analysis of epidemiologic studies, the possibility of con-
founding by unmeasured confounders can never be fully
eliminated. Greenland"'? has also emphasized that the failure
to randomize and the resulting potential for confounding in
epidemiologic studies undermines the interpretability of the
inferential statistics that are generally used in these studies
(i.e., p values and confidence intervals). Thus, the true uncer-
tainty in the results from epidemiologic studies may not be
fully estimable because of unrecognized confounding.

Effect Modification

Effect modification (interaction) in epidemiologic
studies is also an important consideration for QRA. Effect
madification refers to a change in the magnitude of an effect
measure (e.g., rate ratio) according to the value of an addi-
tional variable.!"? The risks in occupational cohort studies
may be modified by related, time-dependent covariates such
as age at first exposure, time since first exposure (empirical
induction period), or time since last exposure; risks may also
be modified by personal habits such as cigarette smoking or
by other exposures found in the workplace. When recognized
and properly analyzed, effect modification may be viewed as
anadvantage of epidemiologic data over animal bioassay data
for QRA because it provides information on how exposures
interact in the real world. However, unrecognized effect
modification may introduce additional uncertainties into the
extrapolation of the results from an epidemiologic study to
other populations in QRA.

Sample Size and Statistical Power

Epidemiologic studies are relatively insensitive for
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TABLE I. Sample Size Estimates for Detecting Varying Levels of Excess Lung Cancer Risk
in a Hypothetical, Retrospective, Cohort, Mortality Study

Assumed
Excess Relative Expected Person Number of
Risk Risk (SMR)A Deaths® Years Workers®
1072 1.20 170 217,161 4,343
107 1.02 15,605 2.0x 10’ 399 x 605
107 1.002 1.5x 10° 2.0x10° 39.6 x 10°
107% 1.0002 1.5x 108 2.0x to" 39.6 x 10°

ARelative risks calculated using a background risk {cumulative probability) of 0.06 for developing lung cancer
for male(s1 :gver age 15, based upon the proportion of deaths from lung cancer among U.S. males over age 15
in 1982.

Bexpected number of deaths calculated using formula from Beaumont and Breslow,"*) assuming 80% power
(1-P), a level of 0.05 (1-tail), and the calculated relative risk.

CF’erscm—years calculated by dividing the expected number of deaths by the lung cancer rate (7.8 x 1074 among
males between the ages of 45 and 54 based on U.S. mortality rates from 1982,1'3 which is approximately the

average of the hypothetical population.

PNumber of workers calculated by assuming each worker contributed 50 person-years to the study.

detecting the levels of risk that are of general concem to
regulatory agencies and that need to be estimated in QRAs.
Although rigid criteria for significant (deminimus}) risk have
not been established, the U.S. Environmental Protection
Agency (EPA) and Food and Drug Administration have
generally set regulations to limit risks to between 1 per
100,000 and 1 per 1,000,000. The Occupational Safety and
Health Administration (OSHA) in its most recent rulings on
carcinogens has generally adopted exposure limits that cor-
respond to a lifetime risk of 1 per 1000 workers.

Estimates of the population size required for a retrospec-
tive, cohort, mortality study to have 80% statistical powex'A
(at & =0.05) for detecting lung cancer risks corresponding to
the levels of risk of between 1 per 100 and 1 per million are
presented in Table I. These estimates were constructed fora
hypothetical cohort of male workers who were followed for
50 years. In practice, the average period of follow-up in most
occupational cohort mortality studies is considerably less
than 50 years; thus, these estimates are most likely underes-
timates of the true sample sizes that would be required.

It is readily apparent from Table I that extremely large
sample sizes would be needed to detect the levels of risk of
concern to U.S. regulatory agencies. Even at the nominal
deminimus risk level of 1 per 1000 (used by OSHA), a sample
size of nearly 400,000 workers would be required. Few
retrospective, cohort, mortality studies have been performed
that have included this many workers, and thus, it is extremely
unlikely that sufficiently large cohorts can be identified to
detect risks below 1 per 1000. It is also noteworthy that few
e.Pidcmiologists would be willing to accept relative risk es-
Umates as low as those presented in Table I as being causally
significant (even if it was statistically significant) because it

AOne minus the probability (B) of making a Type Il error (failing 10 reject the
null hypothesis when it is false).

is difficult to fully dismiss the potential for confounding at
such low levels of relative risk.

Therefore, negative epidemiologic studies generally
cannot be used to rule out the levels of risk that are of concem
to regulatory agencies because of the limitations in statistical
power discussed above. Negative epidemiologic studies,
however, may still be useful for developing a likely upper
bound (i.e., confidence interval) on the risk of exposure.

Meta-analysis, which involves the combination of study
results, may be used to improve the sensitivity of epi-
demiologic studies.'> However, combining occupational
studies to perform a meta exposure—response analysis may be
problematic because different methods are often used to
estimate exposures in these studies.

Length of Folfow-Up, Latency, and Lag Periods

Most regulatory agencies are interested in developing
regulations based upon estimates of lifetime risks of ex-
posures. This presents a problem for using occupational,
cohort, mortality studies for QRA because, in most studies,

.only small segments of the population have been followed for

an entire lifetime. In contrast, in most animal bioassay
studies, the animals are observed for nearly their entire life
span. Thus, some epidemiologic investigations may be nega-
tively biased if the study population was simply not followed
for a sufficiently long period of time.

The total time from firstexposure to the clinical detection
of or death from cancer has been termed the "empirical
induction time" by Rothman'® but is more frequently
referred to as the time since first exposure (or imprecisely as
the latency period). As illustrated in Figure 1, this period of
time can be conceptually divided into two phases: 1) the time
from first exposure to the development of a malignant cell
termed the "induction period" and 2) the time from when a
cell becomes cancerous until the clinical detection of the
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FIGURE 1. Length of follow-up.
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tumor (or death from the malignancy) termed the "latency”
or"lag" penod Exposurcs that occur during the lag period
may be expected té have no effect on tumor incidence and
should be discounted from exposure-response analyses.

Although the actual lag period is generally unknown, it
can be estimated empirically by iteratively refitting models
with dxfferem assumptions about the length of the lag
penod. 1) The lag period that results in maximizing the
goodness of fit of the model may then be chosen for use in
the final risk assessment model.

Although the induction period generally cannot be
measured in cohort mortality studies, the effect of the empiri-
cal induction time (i.e., time since first exposure) can be
assessed. If the empirical induction period modifies the effect
of exposure, then extrapolations for QRA need to take this
into account.

Statistical Analyses

Model Selection

Risk assessors have long recognized the difficulty of
selecting an appropriate mathematical model for extrapola-
tion in QRA using animal bioassay data."™® While it is
possible to empirically choose models that describe the data
well in the range of the observed data, the true dose~response
relationship for the lower dose range is generally unknown
and can only be inferred based upon biological and statistical
considerations. This problem is generally not circumvented
by using data from occupational mortality studies because
these studies most often inciude individuals who were ex-
posed to relatively high exposures in the past and, as
demonstrated above, extrapolations beyond the range of the
data are generally required for estimating low-dose risk
owing to limitations in statistical power.

In the following sections, examples are drawn for heuris-
tic purposes from an assessment recently performed by re-
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searchersatthe N auonal Institute for Occupational Safety and
Health (NIOSH) 9 of the risk of lung cancer associated with
cadmium exposure based on a NIOSH retrospective, cohort,

monah?' study of workers from a cadmium production
facility.

Statistical Models

Most QRAs based on occupational mortality studies
have been based upon purely statistical models as opposed to
biologically based models (described below). Considerable
progress has been made in developing statistical methods for

* modeling hazard rates® from occupational, cohort, mortality

studies in the past decade. An excellent review of these
modeling techniques is presented in Breslow and Day( 2
These models may be broadly categorized into two classes:
1) models in which the effect of‘exposure adds to the back-
ground rate (additive models) and 2) models in which the
effect of exposure multiplies the background rate (multiplica-
tive models). These two classes of models may be represented
mathemaucally as follows:

additive: A(t) = Ao(t) + r {x(t)B} (1)

multiplicative: A() = Ao(t)r {x(t)B} (2)
where: A(t)= predicted hazard rate’
Ao(t) = background hazard rate at age t
x(t) = vector of exposure and other explanatory
variables
B = vector of regression parameters
r{x(t)} = relative rate function (for Equation 2) or
an excess (for Equation 1) rate function

Rate functions (r{x(t)}) that have been commonly used
for models of cohort mortality data include:

exponential: r{x(t)B} = exp (x(t)p) (2a)
additive relative rate: r{x(t)} = {1 + x(1)B) (2b)

power: r{x(t)B} = (x(t) + k}® (2¢)

- where: k = small "background"” exposure level,

which is often assumed to be 1

The functional forms previously described may be fitted
to data from occupational, cohort, mortality studies with
person-years and observed deaths categorized by the ex-
posure and other explanatory variables using Poisson regres-
sion.? Alternatively, with the exception of the additive
model, all of these functional forms may be fitted to data from
occupational, cohort, mortality studies by modeling the

BThe hazard rate is the instantaneous probability of dying from the disease
given survival prior to that time.
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hazard rate continuously using the Cox proportionate hazards
modt:l.("4

In theory, these two approaches should yield similar
results assymptotically.(2 ) In practice, as the results

resented in Figure 2 from the NIOSH cadmium risk assess-
mem(lg) illustrate, these regression methods may yield some-
what different results. The coefficient for cadmium exposure
was approximately three times lower from the Cox propor-
tional hazards model than from the Poisson regression model,
even though both modelis had the same functional form (ad-
ditive relative rate) and parameters.

In general, selection of an appropriate functional form
for modeling cannot be based solely on statistical criteria of
goodness of fit. Several models may provide a reasonable fit
to the data, and it is generally necessary to consider additional
information (e.g., biologic) for choosing an appropriate
model for GRA. On the other hand, a model that does not fit
the data in the observed data range is unlikely to be a reliable
model for predicting low-dose risks.

Anexample of this dilemma is presented in Figure 3 from
the NIOSH cadmium risk assessment.!) In this assessment,
the goodness of fit of the various functional forms described
above was evaluated using Poisson regression. The power
function, additive relative rate, and exponential multiplica-
tive models all provided a reasonably good fit to the observed
data, whereas the additive model did not appear to fit the data
well. The power function model, which fit the data the best
(i.., lowest model deviance), was not chosen for the QRA
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FIGURE 2. Comparison of rate ratio estimates from models of the NIOSH
cadmium cohort study. Data lagged 5 years.
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FIGURE 3. Poisson model hazard rates as a function of curnulative cadmium
exposure based on lagged 5-year analysis for white males, age 70, 1940-1960.

because the model predicted background hazard rates that
were nearly two orders of magnitude lower than the rates in
the U.S. general population. The use of the power model for
the QRA would have resutted in grossly inflated estimates of
relative and excess risk. The additive relative rate model,
which was the next best-fitting model, was chosen as the
model for the QRA. It is noteworthy that the hazard rate
estimates derived from these models diverge by over an order
of magnitude at the extremes (i.e., high and low doses) of the
exposure-fesponse curves.

Internal versus External Analysis

Standardized mortality ratios (SMRs) are generally
reported as the effect measure in most occupational cohort
mortality studies. The SMR is the ratio of the number of
deaths observed to the number expected and is frequently
multiplied by 100 to express the ratio as a percentage. The
expected number of deaths is calculated by applying the age-,
calendar time-, race-, and sex-specific person-years distribu-
tion of the study population to the corresponding rates from
an external referent group (e.g., the U.S. population).

Risk assessors have modeled SMRs that are reported in
occupational, cohort, mortality studies for several exposure
groups and, sometimes, even with just one group.( The
models discussed above may be modified to incorporate
external rates yielding the following mathermatical forms that
are analogous to Equations 1 and 2:

additive: A(t) = A*(t) + r {x(t)B} (3
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multiplicative: A(t) = A*(t)r {x(t)B} 4

where }..(t) represents the external mortality rates and the
other parameters are unchanged from the Equations 1 and 2
described above. Equation 4 may also be expressed in terms
of modeling the SMR using the following form:®>)
0BS
EXP

where: OBS = observed
EXP = expected number of deaths

= r{x(t)B} ®)

Although modeling SMRs may be the only possible
approach if the risk assessor only has access to published
tables, there are at least two serious potential problems with
this approach. First, because SMRs are indirectly stand-
ardized, the SMRs from different exposure groups are not
standardized to the same standard and, thus, are not directly
comparable.(1 D Therefore, the modeling of SMRs from
several exposure groups may be biased by demographic (e.g.,
age, race, or sex) or other differences between the categories.
Second, and probably of greater significance, is the well-
known fact that SMRs may be negatively biased because of
the “healthy worker effect”; 2", a working cohort may
have a lower incidence of disease (or mortality) than the
general population (the referent) simply because they are
healthy enough to be employed.

An alternative analytic approach, which avoids the pit-
falls described above for the analyses of SMRs, is to base the
analysis on internal comparisons within the cohort using the
modeling techniques described above (i.e., Equations 1 and
2). Although most occupational cohort mortality studies do
not include an internal nonexposed group, an internal analysis
is still possible as long as there is a range of exposures within
the cohort. The inclusion of an internal, nonexposed, referent
group, when available, does add some stability to the regres-
sion model.

Figure 4 presents a comparison of the resuits from an
analysis of the risk of lung cancer in relation to cumulative
exposure to cadmium that was performed by OSHA® with
the results from the NIOSH cadmiun risk assessment!'® to
illustrate the potential bias that may be introduced by the
modeling of SMRs. Both analyses were performed on the
findings of a NIOSH cohort mortality study of cadmium
smelter workers,(zo) although the NIOSH analysis was based
on a more recent follow-up of this cohort.®” OSHA also
produced risk estimates based upon a multistage model of a
rat bioassay study,(3o) which are also presented in Figure 4
for comparison purposes.

‘For its analysis of the epidemiologic data, OSHA per-
formed a Poisson regression of the SMRs reported by Thun
et al.%0 using an additive relative rate function. The risks
predicted from OSHA's epidemiologic risk assessment were
approximately seven times lower than the risks predicted by
modeling of the rat bioassay data. It was suspected that, at
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FIGURE 4. Comparison of NIOSH and OSHA excess risk estimates for
cadmium exposure, assuming 45 years of exposure.

least in part, this discrepancy might be explained by the
potential negative bias in the SMR analysis due to the healthy
worker effect. In the NIOSH assessment, a similar functional
form (i.e., additive relative rate) was fitted using Poisson
regression, but the model was fitted to the intemnal stratum-
specific rates generated directly from the study. It can be seen
that the NIOSH risk estimates were higher than those from
OSHA'’s epidemiologic assessment, but they were still some-
what lower than the estimates produced by the multistage
modeling of the rat bioassay study. Thus, it appears that
OSHA'’s reliance on modeling the SMRs, as opposed to
internal analysis of the rates within the cohort, introduced a
negative bias in the estimation of risks.

Biologic Models

Biologically based models, panicularlk' models based on
the multistage theory of carcinogenesis,(3 ) have often been
used for producing risk estimates from animal bioassay data.
These models have the advantage over statistical models of
being based on biologic theory, thus providing a theoretical
basis for extrapolation to low doses. On the other hand, these
models may be oversimplified representations of the complex
processes involved in carcinogenicity, and the validity of
these models warrants further investigation.

The multistage theory suggests that, in order for a cell to
become cancerous, it must progress through a series of or-
dered, independent, and irreversibie stages. Stochastic
models have been derived based on the multistage theory for
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plication to animal bioassay data. The quantai muitistage
model(w has been the most commonly used modef, which is
fitted to the proportions of tumors at the end of the experiment
using the following mathematical functional form:

P=1-exp(~<qo+aqid +...+qxd) (6)

where: P = cumulative risk
q = regression coefficients
d = dose
k = number of stages affected by the exposure

A "linearized" version of Equation 6, based on the upper
95% confidence limit on the linear parameter (qi1) has been
used extensively by EPA for its QRAs.(3 A time-to-tumor
version of the multistage model has also been developed for
modelmg the time to the event (tumor) in animal bioassay
studies.t

The multistage model has been shown to provide a
reasonable descri non of the relationship between cancer
incidence and age for most nonhormonally mediated can-
cers in humans. DolI® has reported that the effect of
cigarette smoking on lung cancer risk appears to be consistent
with smoking altering the first parameters stage of a five-
stage model, whereas other analyses mdxcate that smoking
may act on both the first and fourth stages D The multistage
model has only been applied in a few cases to the analysis of
occupational, cohort, mortality data. 3637

The implications of the multistage model may be ex-
plored indirectly by examining how the patterns of relative
(or excess) risk in an epidemiologic study are modxﬁed by
age at initial exposure and time since last exposurc Oifa
carcinogen acts on the first stage of the process, then 1)
relative and excess risk are increasing functions of time since
last exposure and 2) excess risk is independent of age at initial
exposure, whereas the relative risk decreases with increasing
ageatinitial exposure. If a carcinogen acts on the penultimate
(next to last) stage of the process, then 1) relative and excess
risk increase with age at initial exposure and 2) the excess risk
is independent of time since last exposure, whereas the rela-
tive risk decreases with i mcreasmg time since last exposure.
For example, in a NIOSH® assessment of radon daughters
and lung cancer risk, the relative risk was observed to increase
with age at initial exposure and decrease with time since last
exposure, suggesting that radon acts on a late stage in the
carcinogenic process.

Recently, two-stage models of carcmogenesxs have been
Proposed for use in risk assessment.{*?’ In addition to allow-
ing for-two mutational events, these models allow for the
influence of exposures on cell growth and differentiation.
Two-stage models have been shown to provide a reasonable
description of the age inciderite curves for most human
tumors, including hormonally mediated tumors that are not
well described by the multistage model.*! These models
have not as of yet been applied to QRA for occupational or
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environmental exposures.

Translating Rates to Risks — Extrapolation Models

As mentioned earlier, regulatory agencies generally re-
quire estimates of lifetime risk for their decision-making
process. Thus, the hazard rates (or rate ratios) that are es-
timable from the statistical models described in this paper
need to be converted to estimates of [ifetime risk. In order to
make this conversion, assumptions need to be made about the
duration and timing of the exposure. For occupational QRAs,
it has generally been assumed that the workers are exposed
for approximately 45 years (i.e., a working lifetime) starting
at age 20, whereas for environmental QRAs, the exposure has
generally been assumed to be initiated at birth and to last until
death at aﬂ)roximately 70 years of age.

Gail®" has proposed methods for computing lifetime
risk based on actuarial methods, which account for the effects
of competing causes of death. For muitiplicative models, the
lifetime risks of occupational exposures may be estimated
using Gail's method to estimate the risks of 45 years of
exposure at age 75 based on the following formula:

Zma. —1) g} exp[-E {BR =1 ) =ca (] (D)

RR; = rate ratio estimate from the model
for exposure achieved at age i
qd(i) = background age-specific rate for
the disease of interest '
qa(i) = background age-specific mortality
for all causes
i = age indices

where:

The results from the application of this approach to the
estimation of lifetime risks from occupational exposure o
cadmium based on the additive relative rate models from the
NIOSH(!? QRA are presented in Table II. Based on this
assessment, the lifetime risk of dying from lung cancer after
45 years of exposure at the current OSHA standard for
cadmium fumes of 100 ug/m3 was estimated to range from 5
to 10 per 100 workers. Note that in this model (Equation 7),
the rate ratio is assumed to be constant with age at risk and
length of follow-up and is solely dependent on the exposure
achieved (at age i). Adjustments to the extrapolation model
need to be made if there is evidence that the effect of exposure
is modified by these or other covariates.

Conclusion

The purpose of this paper was to review and discuss the
major methodologic issues related to the use of epiderniologic
data for risk assessment. Although animal studies have been
most often used for QRA, it is generally recognized that
well-conducted epidemiologic studies would provide the best
basis for estimating human risk. However, the observational
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TABLE II. Estimates of Excess Risk per 1000 Workers
Based on the Poisson Regression and Cox Proportional
Hazards Additive Relative Rate Models in the NIOSH
Cadmium Risk Assessment

Excess Risk Estimates
(per thousand workers)

TWA Poisson Cox
(ng/m®) Model Model

1 1.2 0.5

5 6.0 2.6

10 1.9 52
20 23.7 103
50 57.7 25.4
100 . 110.9 49.9
200 X 205.2 96.4

*Risk estimates are based on the results from the 5-year lagged
analysis.

nature of epidemiologic studies often introduces several sour-
ces of uncertainty that are generally not present in QRAs
based on animal experiments.

The lack of adequate exposure (or dose) information is
the most frequently cited reason for not using epidemiologic
data for QRA. There is reason to hope that, in the future,
improvements will be made in the estimation of exposure in
epidemiologic studies and that biologic markers and phar-
macokinetic models will be used to estimate target tissue
doses. Other aspects of epidemiologic study design, e.g.,
confounding, effect modification, length of follow-up, and
statistical power, may also limit the usefulness of epi-
demiologic data for QRA. Even if these limitations can be
overcome, as with animal studies, substantial uncertainties
exist as to the choice of a proper statistical (or biologic) model
for extrapolation from epidemiologic resuits.

Because of the limitations discussed in this paper,
epidemiologic data should not be viewed as a panacea for the
problems inherent in using animal bioassay data for QRA.
This is not to belittle the importance of epidemiologic data.
On the contrary, epidemiologic data is of vital importance to
QRA and hopefully will play an even greater role in the
future. The information that can be derived from epi-
demiologic and toxicologic studies complement one another,
and both data sources need to be used to provide the best
characterization of human risk.
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