• Title/Summary/Keyword: QRA(Quantitative Risk Analysis)

Search Result 39, Processing Time 0.021 seconds

An analysis study for reasonable installation of tunnel fire safety facility (터널 방재설비의 합리적 설치를 위한 분석적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Park, Byoung-Jik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.243-248
    • /
    • 2015
  • Domestic road and railroad construction have been increasingly growing and for reasons of mitigating traffic congestion, urban plan and refurbishment project, deeper and longer tunnels have been built. The event of fire is the most fatal accident in a tunnel, and it can be very disastrous with a high possibility. In this study, QRA (Quantitative Risk Analysis) which is one of quantitative risk analysis approaches was applied to tunnel fire safety design and the evaluation of QRA cases and the cost comparison of QRA methods were carried out. In addition analysis of risk reduction effect of tunnel fire safety system was conducted using AHP (Analytic Hierarchy Process) and the priority of major factors that could mitigate the risk in tunnel fire was presented. As a result, significant cost reduction effect could be obtained by incorporating QRA and it is expected to design fire safety system rationally. The priority of fire safety system based on risk mitigation effect by fire safety system considering the cost is in order of water pipe, emergency lighting, evacuation passage and smoke control system.

A Development of System for Efficient Quantitative Risk Assessment on Natural Gas Supply Facilities (천연가스 공급시설에 대한 효율적 정량적 위험성 평가를 위한 시스템 구축과 적용)

  • Yoon, Ik-Keun;Oh, Shin-Kyu;Seo, Jae-Min;Lim, Dong-Yeon;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • While the natural gas supply industry has continuously been growing, its potential hazard has also risen since the natural gas facilities essentially require installations that carry highly flammable and pressurized gas close to the populated areas, posing a serious consequence of significant property damage as well as human casualties in the event of accident. Therefore Quantitative Risk Assessment (QAR) has been recognized as a appropriate method to reduce the risk as far as possible, considering the reality of unachievable zero-risk. However, it is hard to perform effective QRA on hundreds of gas facilities because of insufficient number of expert and long-term analysis. In this paper, we suggest a conceptual QRA system framework to support more efficient risk analysis in gas supply facilities. In this system, the experts make questionnaires and internal calculation formula needed in accident frequency/consequence analysis of the facility through pre-analysis on the point of analysis, called incident point, and general users locate the point on the map and input the value required by the questionnaire to obtain the risk. Ultimately, this is suggested based on the idea that the specialization is available in QRA analysis process and the validity of the system is verified through actual system construction and application.

Analysis of Marine Vessel Collision Risk based on Quantitative Risk Assessment

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.319-324
    • /
    • 2018
  • The collision problem is one of the design factors that must be carefully considered for the risk of collision occurring during the operation of ships and offshore structures. This paper presents the main results of the ship collision study, and its main goal is to analyze potential crash scenarios that may occur in the FLNG (Floating Liquefied Natural Gas) considering the likelihood and outcome. Consideration being given to vessels visiting the FLNG and surrounding vessels navigating around, such as functionally supported vessels and offloading carriers. The scope includes vessels visiting the FLNG facility such as in-field support vessels and off-loading carriers, as well as third party passing vessels. In this study, based on QRA (quantitative risk assessment), basic research methods and information on collision are provided. Based on the assumptions and methodologies documented in this study, it has been possible to clarify the frequency of collision and the damage category according to the type of visiting ship. Based on these results, the risk assessment results related to the collision have been derived.

Estimation of Leak Frequency Function by Application of Non-linear Regression Analysis to Generic Data (비선형 회귀분석을 이용한 Generic 데이터 기반의 누출빈도함수 추정)

  • Yoon, Ik Keun;Dan, Seung Kyu;Jung, Ho Jin;Hong, Seong Kyeong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.15-21
    • /
    • 2020
  • Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis.

Risk Assessment and Risk contour mapping (네덜란드의 위험성 평가 예 -위험성 평가 및 위험 등고선도-)

  • 편집실
    • Fire Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 1994
  • 이 논문은 설계상의 안전 및 완전한 정량적 위험성 평가에 의해 맞추는 것이 가능한 여러가지 방법(QRA: Quantitative risk analysis)에 촛점을 두면서, 위험성 평가의 방법론의 간략한 개요를 소개하고 있다. QRA의 결과는 단독 위험 및 그룹 혹은 사회적 위험으로써 보통 소개된다. 계산된 단독 risk는 자주 단독 위험 graph(IRG : Individual risk graph)와 단독 위험등고선(IRC : Individual risk contours)의 형으로 나타낸다. IRG와 IRC는 예를 들면 다음과 같은 사고의 시나리오로 계산된다. : 여러가지 기상조건 하에서 2kg/s의 암모니아의 유출을 1800s로 한다. 이 예는 그래프가 곡선의 상승을 나타내는 것이 확실하다. 마지막으로, QRA는 예를 들어서 토지이용계획 등에 유용한 수단으로 될 수 있다고 할 수 있다. 한편 화학플랜트의 안전에 대해서는, 위험성 평가를 위해 다른 방법이 유효하며, 불가피하다.

  • PDF

An effective prevention facilities for railway tunnel design by using Quantitative Risk Analysis (효율적 방재시설을 위한 정량적 위험도 분석)

  • Kwon, Soon-Sub;Shin, Hwa-Cheol;Jung, Ji-Seung;Min, Dae-Hing
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1080-1084
    • /
    • 2007
  • Recently, as demands of new railway and the relocation of existing line, a number of tunnel structures have been constructed. Tunnel structures contribute to minimize the cost and time of transport, but in case of railway fire accident bring serious damages of human life caused by narrowness of shelter, smoke and high temperature, difficulty in rescue. For that reason, at the beginning of plan of tunnel, the optimum design of safety facility in tunnel for minimizing the risks and satisfying the safety standard is needed. In this study, QRA(Quantitative Risk Analysis) technique is applied to design of railway tunnel for assuring the safety function and estimating the risk of safety. The case study is carried out to verify the QRA technique for railway tunnels in Iksan-Sili.

  • PDF

Methodologic Issues in Using Epidemiologic Studies for Quantitative Risk Assessment

  • Stayner Leslie
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.417-425
    • /
    • 1994
  • Although animal studies have been used most often for quantitative risk assessment, it is generally recognized that well-conducted epidemiologic studies would provide the best basis for estimating human risk. However, there are several features related to the design and analysis of epidemiologic studies that frequently limit their usefulness for quantitating risks. The lack of accurate information on exposure in epidemiologic studies is perhaps the most frequently cited limitation of these studies for risk assessment. However. other features of epidemiologic study design, such as statistical power, length of follow-up, confounding, and effect modification, may also limit the inferences that can be drawn from these studies. Furthermore, even when the aforementioned limitations are overcome, substantial uncertainty exists concerning the choice of an appropriate statistical (or biologic) model for extrapolation beyond the range of exposures observed in a particular study. This paper focuses on presenting a review and discussion of the methodologic issues involved in using epidemiologic studies for risk assessment. This review concentrates on the use of retrospective, cohort, mortality studies of occupational groups for assessing cancer risk because this is the most common application of epidemiologic data for quantitative risk assessment (QRA). Epidemiologic data should not be viewed as a panacea for the problems inherent in using animal bioassay data for QRA. Rather, information that can be derived from epidemiologic and toxicologic studies complement one another, and both data sources need to be used to provide the best characterization of human risk.

  • PDF

A Study on Safety Analysis of Stationary LPG - Mobile Hydrogen Complex Refueling Station (LPG 복합 이동식 수소충전소 안전성 분석에 관한 연구)

  • Kim, Piljong;Kang, Seungkyu;Yoo, Myoungjong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.48-60
    • /
    • 2019
  • After the Paris Agreement in 2015, the government has been promoting various policies such as 'Hydrogen-Economy Roadmap(2019)' to supply hydrogen. As part of this, the government announced the goal of building 310 hydrogen refueling stations(HRS) until 2022. To this end, special case standard for the introduction of complex, packaged, and mobile hydrogen refueling stations(MHRS) have been enacted and promulgated. The MHRS has the advantage of being able to supply hydrogen to multiple regions. However, due to the movement and close distance between facilities, it is necessary to secure proper installation standards and operational safety through safety analysis. In this study, the possibility of introduction was investigated by designing a standard model and quantitative risk assessment(QRA). As a result of QRA, personal and social risk were acceptable, and the empirical test direction and implications were derived.

A Reliability Model of Process Systems with Multiple Dependent Failure States (다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델)

  • Choi, Soo Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.