• Title/Summary/Keyword: QD (quantum dot)

Search Result 124, Processing Time 0.031 seconds

InAs 양자점 크기에 따른 광학적 특성 평가

  • Han, Im-Sik;Park, Dong-U;No, Sam-Gyu;Kim, Jong-Su;Kim, Jin-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.187-187
    • /
    • 2013
  • 양자점(Quuantum dot, QD)은 0차원 특성을 가지는 구조로 양자 구속 효과로 인하여 bulk와 는 다른 구조적, 광학적, 전기적 특성을 가지고 있다. InAs QD는 size와 barrier의 bandgap 조절을 이용하여 쉽게 bandgap을 바꿀 수 있는 장점이 있어 solar cell, semiconductor laser diode, infrared photodetector 등으로 많은 연구가 이루어지고 있다. 일반적으로 Stranski-Krastanov (SK) mode로 성장한 InAs QD는 보통 GaAs epilayer와의 lattice mismatch (7%)를 이용하여 성장을 하고 이로 인하여 strain을 가지고 있고 QD의 density와 stack이 높을수록 strain이 커진다. 하지만 sub-monolayer (SML) QD 같은 경우 wetting layer가 생기는 지점인 1.7 ML이하에서 성장되는 성장 방식으로 SK-QD보다는 작은 strain을 가지게 된다. 또 QD의 size가 작아 SK-QD보다 큰 bandgap을 가지고 있다. 본 연구에서는 분자선 에피택시(molecular beam epitaxy, MBE)를 이용하여 semi-insulating GaAs substrate 위에 InAs QD를 0.5/1/1.5/1.7/2/2.5 monolayer로 성장을 하였다. GaAs과 InAs의 성장온도와 성장속도는 각각 $590^{\circ}C$, 0.8 ML/s와 $480^{\circ}C$, 0.2 ML/s로 성장을 하였으며 적층사이의 interruption 시간은 10초로 고정하였고 10주기를 성장하였다. Photoluminescence (PL)측정 결과 SML-QD는 size에 따라서 energy가 1.328에서 1.314 eV로 약간 red shift를 하였고 SK-QD의 경우 1.2 eV의 energy정도로 0.1 eV이상 red shift 하였다. 이는 QD size에 의하여 energy shift가 있다고 사료된다. 또 wetting layer의 경우 1.41 eV의 energy를 가지는 것으로 확인 하였다. SML-QD는 SK-QD 보다 반치폭(full width at half maximum, FWHM)이 작은 것은 확인을 하였고 strain field의 감소로 해석된다. 하지만 SML-QD의 경우 SK-QD보다 상대적으로 작은 PL intensity를 가지고 있었다. 이를 개선하기 위해서는 보다 높은 QD density를 요구하게 되는데 growth temperature, V/III ratio, growth rate 등을 변화주어서 연구할 계획이다.

  • PDF

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee;Su Hyun Park;Gyungsu Byun;Chang-Yeoul Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.226-235
    • /
    • 2024
  • InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

A Study on Photo-Luminescence Spectrum Properties of ZnS:Mn QD Prepared by Wet-Process (습식공정을 이용한 ZnS:Mn2+계 QD의 합성 조건에 따른 광 특성 변화 연구)

  • Cha, Ji Min;Lee, Yoon Ji;Moon, Seong Cheol;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.42-47
    • /
    • 2017
  • In this study, the physical and optical properties of $ZnS:Mn^{2+}$ Quantum Dot prepared by wet-process condition with Mn/Zn ratio was valuated. The powder characteristics and optical behavior were investigated through XRD, TEM and Photo spectrometer exicted by various UV light source. We found the main peak of ZnS (111) was shifted by 0.8 degree to low angle position with increasing stirring energy from 200 RPM to 600 RPM, which is thought to be the increase of lattice defects during wet process. The photo luminescence at 600 RPM shows also higher blue intensity which is well correlated with XRD results. With increasing Mn/Zn ratio, the PL intensity become higher and shifed by 8.5nm to right side, by the increment of substitutional $Mn^{2+}$ ions.

The Status of Research of Quantum dot Using 4P Analysis -Focusing on the application and convergence field of quantum technology (4P 분석을 통한 양자점 기술개발 현황 분석 -양자점 기술의 응용 및 융합 분야를 중심으로)

  • Heo, Na-Young;Ko, Young-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • Quantum dot technology can be complementary application of the bulk material, and that a wide range of applications that can take advantage of the characteristic convergence technology. With the development of quantum dot technology, it is important to analyze Marketability of quantum technology, business opportunity. In this study, patents, papers, market, analysis of the project will be to investigate the quantum information research trends. Research results are expected to be used as a basis for research and development path setting and strategic planning of the quantum dot. In particular, this study found the performance of quantum dot research through patents and papers analyzed. In addition, fast-growing field, the field to lead the commercialization were derived. Compared to the advanced research and national research was to diagnose the domestic research into quantum dots.

Photoluminescence Characteristics of InAs Quantum Dots Grown on AlAs Epitaxial Layer (AlAs 에피층 위에 성장된 InAs 양자점의 Photoluminescence 특성연구)

  • Kim, Ki-Hong;Sim, Jun-Hyoung;Bae, In-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.356-361
    • /
    • 2009
  • The optical characterization of self-assembled InAs/AlAs Quantum Dots(QD) grown by MBE(Molecular Beam Epitaxy) was investigated by using Photoluminescence(PL) spectroscopy. The influence of thin AlAs barrier on QDs were carried out by utilizing a pumping beam that has lower energy than that of the AlAs barrier. This provides the evidence for the tunneling of carriers from the GaAs layer, which results in a strong QD intensity compared to the GaAs at the 16 K PL spectrum. The presence of two QDs signals were found to be associated with the ground-states transitions from QDs with a bimodal size distribution made by the excitation power-dependent PL. From the temperature-dependent PL, the rapid red shift of the peak emission that was related to the QD2 from the increasing temperature was attributed to the coherence between the QDs of bimodal size distribution. A red shift of the PL peak of QDs emission and the reduction of the FWHM(Full Width at Half Maximum) were observed when the annealing temperatures ranged from 500 $^{\circ}C$ to 750 $^{\circ}C$, which indicates that the interdiffusion between the dots and the capping layer was caused by an improvement in the uniformity size of the QDs.

Size Control of PbS Colloidal Quantum Dots and Their Application to Photovoltaic Devices

  • Lee, Wonseok;Ryu, Ilhwan;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.1-249.1
    • /
    • 2015
  • Quantum dots (QDs) are attracting growing attention for photovoltaic device applications because of their unique electronic, optical and physical properties. Lead sulfide (PbS) QDs are one of the most widely studied materials for the devices and known to have size-tunable properties. In this context, we investigated the relationship between the size of PbS QDs and two synthesizing conditions, a concentration of ligand, oleic acid in this work, and injection temperature. The inverted colloidal quantum dot solar cells based on the heterojunction of n-type zinc oxide layer and p-type PbS QDs were also fabricated. The size of the QDs and cell properties were observed to depend on both the QD synthesizing conditions, and hence the overall efficiency of the cell could vary even though the size of QDs used was same. The QD synthesizing conditions were finally optimized for the maximum cell efficiency.

  • PDF

Temperature Dependent Photoluminescence from InAs/GaAs Quantum Dots Grown by Molecular Beam Epitaxy

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.86-90
    • /
    • 2017
  • We have reported structural and optical properties of self-assembled InAs/GaAs quantum dot (QD) grown by molecular beam epitaxy with different arsenic to indium flux ratios (V/III ratios). By increasing the V/III ratio from 9 to 160, average diameter and height of the InAs QDs decreased, but areal density of them increased. The InAs QDs grown under V/III ratio of 30 had a highest-aspect-ratio of 0.134 among them grown with other conditions. Optical property of the InAs QD was investigated by the temperature-dependent photoluminescence (PL) and integrated PL. From the temperature dependence PL measurements of InAs QDs, the activation energies of $E_{a1}$ and $E_{a2}$ for the InAs QDs were obtained $48{\pm}3meV$ and $229{\pm}23meV$, respectively. It was considered that the values of $E_{a1}$ and $E_{a2}$ are corresponded to the energy difference between ground-state and first excited state, and the energy difference between ground-state and wetting layer, respectively.

Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes (양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구)

  • JUNG, SUNG-MOK;KIM, JAE-YUP
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.

Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films (메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지)

  • Lee, Hyo Joong
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This review article summarizes the recent progress of quantum dot (QD)-sensitized solar cells based on mesoporous $TiO_2$ thin films. From the intrinsic characteristics of nanoscale inorganic QDs with various compositions, it was possible to construct a variety of 3rd-generation thin film solar cells by solution process. Depending on preparation methods, colloidal QD sensitizers are pre-prepared for later deposition onto the surface of $TiO_2$ or in-situ deposition of QDs from chemical bath is done for direct growth of QD sensitizers over substrates. Recently, colloidal QD sensitizers have shown an overall power conversion efficiency of ~7% by a very precise control of composition while a representative CdS/CdSe from chemical bath deposition have done ~5% with polysulfide electrolytes. In the near future, it is necessary to carry out systematic investigations for developing new hole-conducting materials and controlling interfaces within the cell, thus leading to an enhancement of both open-circuit voltage and fill factor while keeping the current high value of photocurrents from QDs towards more efficient and stable QD-sensitized solar cells.