• Title/Summary/Keyword: Q. dentata

Search Result 74, Processing Time 0.022 seconds

A Systematic Classification of Korean Fagaceae by the Pollen (화분(花粉)에 의한 한국산(韓國產) 참나무과(科) 계통분류(系統分類))

  • Park, Seung Young
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.151-161
    • /
    • 1991
  • I tried to specify the taxa of Fagaceae in Korea by the character of their pollen grains. The light microscope(LM) and the Scanning electron microscope(SEM) were used to examine the pollen grains of 19 taxa, 5 genera. The result are as follows. 1. The pollen of Fagaceae in Korea could be grouped into four types and 4 subtypes. 1) Fagus type 2) Castanea type 3) Lithocarpus, Castanopsis type 4) Quercus type (1) Cyclobalanopsis subtype (2) Prinus subtype (3) Dentatae subtype (4) Cerris subtype. 2. The morphology of the granula on the pollen of Quercus was closely related to the differantiation of the shape of the cup scales. 1) The uniformity of branching granula on the pollen grain surface corresponds to the morphological features of the concentric arrangement of cup scales. 2) The morphological features of the pollen grain surface intermingled with large or small granula, simple-granula and tuber granula which have small points of circular prominence, corresponded to those of short cup scales. 3) The morphological features of the polllen grain surface intermingled with large or small granula, simple-granula and tuber granula with an apex of amoeba type corresponded to those of Q. dentata Thunb, with thin, fine and long cup scales. 4) The morphological features of the pollen grain surface intermingled with large of small granula of with only simple-granula, corresponded to those of Q. acutissima carr. with thick, fine and long cup scales. 3. The result of cluster analysis by coding the sculpture pattern of the pollen grain surface, the existence and nonexistence of surface perforate, the grain size and granula type were coincident with the system of classification of plants and showed an intimated relationship even under th level of species.

  • PDF

Ecological Characteristics and Vegetation Structure Analysis of Eurya Japonica Community -Focusing on Busan Metropolitan City- (사스레피나무 군락의 생태적 특성 및 식생구조 분석 -부산광역시를 중심으로-)

  • Jang, Jung-Eun;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • The purpose of this study is to investigate the ecological characteristics and vegetation structures of Eurya japonica in Busan. As a result of the TWINSPAN and DCA analysis, 89 plots of 100㎡ each were divided into 3 communities: Quercus serrata-Pinus densiflora-E. japonica community, Pinus thunbergii-E. japonica community, and P. thunbergii-Camellia japonica community. Community I consisted of the Quercus serrata-Pinus densiflora-E. japonica which was mainly located in the high altitude inland. While Q. serrata and P. densiflora competed in the tree layer, the dominant species of the understory layer was E. japonica. Since Carpinus tschonoskii, one of the climax species, was distributed evenly from shrub to tree layers, it was likely that deciduous oak trees or Carpinus tschonoskii would become dominant species in community I. In community I, E. japonica was found in higher altitude than the other evergreen broad-leaved tree and was expected to maintain their tree vigor even if the vegetation structure is converted into the deciduous forest. Community II, the P. thunbergii-E. japonica community, was predicted to maintain its tree vigor unless there were unexpected disturbance factors. Community III, consisting of P. thunbergii-C. japonica and located in Dongbaek Island, was under artificial management. In community III, P. thunbergii was the only species in the tree layer, while C. japonica was predominant in the understory layer. E. japonica and various evergreen broad-leaved tree species were present in the understory layer and shrub layer, which were unmanaged areas. Therefore, it is expected that unless C. japonica is continuously managed, E. japonica is likely to become the dominant species. There were also various evergreen broad-leaved species, such as Machilus thunbergii and Pittosporum tobira, present in the shrub layer. If the temperature continues to rise, the habitat is expected to become evergreen broad-leaved forests in the future as P. thunbergii community declines. The result of Pearson's correlation coefficient analysis of E. japonica and species appearing in 89 plots showed that 9 species were had a statistically significant relationship (p<0.05). Four species, including P. tobira and Q. dentata, had a positive correlation. Five species had a negative correlation, and C. japonica, which had the same ecological position as E. japonica, showed the most negative correlation at -0.384.

Growth Environment and Vegetation Structure of Cephalotaxus koreana Nakai in South Korea Natural Habitats (국내 개비자나무 자생지 생육환경 및 식생구조)

  • Kim, Young Ki;Kim, Joon Seon;Lee, Kap Yeon;Kim, Moon Sup
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.384-395
    • /
    • 2018
  • This study was carried out to investigate the environment factors including community structure and soil characteristics in the wild habitats of Cephalotaxus koreana, and offers the basic information for habitats conservation and restoration. Most of the wild habitats were located at altitudes between 148~835 m with inclinations ranged as $12{\sim}32^{\circ}$. The average soil pH was 4.7~5.9, soil organic matter was 5.72~15.99%, cation exchange capacity was $14.1{\sim}19.9cmolc/kg^{-1}$ and exchangeable $K^+$, $Ca^{2+}$, $Mg^{2+}$ was 0.25~0.48 cmolc/kg, 0.79~6.68 cmolc/kg, 0.31~1.73 cmolc/kg, respectively. The dominant species of tree layer were found to be dominated by Quercus dentata in Jekbo-san (C1), Acer pictum in Bogae-san (C2), Acer pseudosieboldianum in Geumwon-san (C3), Q. serrata in Jiri-san (C4), Zelkova serrata in Baegun-san (C5), and Q. acutissima in Duryun-san (C6). The Species diversity (H') was 0.854~1.234, evenness (J') was 0.654~0.993, and dominance (D) was found to be 0.067~0.346. Correlation coefficients analysis based on environmental factors, community structure and value of species diversity shows that growth of Cephalotaxus koreana is correlated with species diversity and evenness. This result show that Cephalotaxus koreana habitats located in mature stands.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF