• Title/Summary/Keyword: Q-optimal design

Search Result 105, Processing Time 0.032 seconds

Tuning of LQ-PID Controller-Time Domain Approach (LQ-PID 제어기 동조-시간영역에서의 접근)

  • Yang Ji Hoon;Suh Byung Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • This paper proposes an optimal robust LQ-PID controller design method for the second order systems to satisfy the design specifications in time domain. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameters of the overshoot and the settling time which are design specifications in time domain, and the weighting factors Q and R in LQR. we can achieve the performance-robustness in time domain as well as the stability-robustness.

Non-spillover control design of tall buildings in modal space

  • Fang, J.Q.;Li, Q.S.;Liu, D.K.
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.189-200
    • /
    • 1999
  • In this paper, a new algorithm for active control design of structures is proposed and investigated. The algorithm preserves the decoupling property of the modal vibration equation and eliminates the spillover problem, which is the main shortcoming in the independent modal space control(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic Riccati equation and the optimal actuator control force are obtained, and the control design procedure is significantly simplified. A numerical example for the control design of a tall building subjected to wind loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and displacement responses of tall buildings under wind actions.

Design and fabrication of Diplexer for Dual-band GSM/DCS Application using High-Q Multilayer Inductors (고품질 적층형 인덕터를 이용한 이중 대역 GSM/DCS 대역 분리용 다이플렉서의 설계 및 제작)

  • Sim, Sung-Hun;Kang, Chong-Yun;Choi, Ji-Won;Yoon, Young-Joong;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.294-298
    • /
    • 2003
  • In this paper, the modeling and design of high-Q multilayer passives have been investigated, and multilayer diplexer for GSM/DCS applications has been designed and fabricated using the passives. To minimize the system, the configuration of a multilayer inductor has involved a square spiral structure. Modeling of a multilayer inductor was performed by the subsystems of distributed components, and using the modeling the optimal structures of the high-Q multilayer inductor could be designed by analyzing parasitics and couplings which affect their frequency characteristics. Multilayer diplexer for GSM/DCS application has been designed and fabricated using LTCC technology. LPF for GSM band had the passband insertion loss of less than 0.55 dB, the return loss of more than 12 dB, and the isolation level of more than 26 dB by locating attenuation pole at 1800 MHz. HPF for DCS band had the passband insertion loss of less than 0.82 dB, the return loss of more than 11 dB, and the isolation level of more than 38 dB by locating attenuation pole at 930 MHz.

  • PDF

Optimal design of slider for stable flying characteristic using 4${\times}$l near-field probe array

  • Jung Min-su;Hong Eo-Jin;Park Kyoung-Su;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Lee Sung-Q;Park Kang-Ho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.171-176
    • /
    • 2005
  • In the information storage development, the trend of the storage device is to increase the recording density. Among such an effort, near-field probe recording is spotlighted as a method of high increasing recording density. For the successfully embodiment of storage device, the actuating mechanism of near-field probe is essentially designed. In this paper, we suggest the slider similar with conventional HDDs and design the slider using near- field probe for the purpose of applying the slider in order to control gap between probe and media. The most important object of slider design is to guarantee the flying ability and stability. For achievement of these design objects, we perform two step of optimal design process. The media is mod! eled as random displacement, which is only considered roughness of disk surface. The design slider is analyzed with dynamic state in assumed media. At this process, the optimal model is confirmed to stable flying stability.

  • PDF

Optimal Design of Slider for Stable Flying Characteristics using $4{\times}1$ Near-field Probe Array

  • Jung, Min-Su;Hong, Eo-Jin;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Sung-Q;Park, Kang-Ho
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • In the information storage development, the trend of the storage device is to increase the recording density. Among such an effort, near-field probe recording is spotlighted as a method of high increasing recording density. For the successfully embodiment of storage device, the actuating mechanism of near-field probe is essentially designed. In this paper, we suggest the slider similar with conventional HDD and design the slider using near-field probe for the purpose of applying the slider in order to control gap between probe and media. The most important object of slider design is to guarantee the flying ability and stability. For achievement of these design objects, we perform two step of optimal design process. The media is supposed to model as random displacement, which is only considered roughness of disk surface. The design slider is analyzed with dynamic state in assumed media. At this process, the optimal model is confirmed to stable flying stability.

  • PDF

Optimal Design of Accelerated Degradation Tests under the Constraint of Total Experimental Cost in the Case that the Degradation Characteristic Follows a Wiener Process (열화가 Wiener process를 따르는 경우의 비용을 고려한 가속열화시험 계획)

  • Lim, Heon-Sang
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.2
    • /
    • pp.117-125
    • /
    • 2012
  • For the highly reliable products, an accelerated degradation test (ADT) is a useful tool which has been employed in industry to obtain reliability-related information within an affordable amount of time and cost. In an ADT, as all other reliability tests, it is important to carefully design the ADT beforehand to obtain estimates of the quantities of interest as precisely as possible. In this paper, optimal ADTs are developed assuming that the constant-stress loading method is employed and the degradation characteristic follows a Wiener process. Under the constraint that the total cost does not exceed a pre-specified budget, the stress levels, the number of test units allocated to each stress level and the number of measurement (termination time) are determined such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

A Selection of Optimal Weighting matrix for Model Following Multivariable Control System to Boiler-Turbine Equipment Using GA (GA를 이용한 보일러-터빈 설비의 모델 추종형 다변수 제어 시스템 설계를 위한 취적 가중치 행렬의 선정)

  • ;黃現俊
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.234-234
    • /
    • 1999
  • The aim of this paper is to suggest a design method of the optimal model following control system using genetic algorithm (GA). This control system is designed by applying GA with reference model to the optimal determination of weighting matrices Q, R that are given by LQ regulator problem. The method to do this is that all the diagonal elements of weighting matrices are optimized simultaneously by GA, in the search domain selected adequately. And we design the model following control system to boi1er-turbine equipment by the proposed method. The model following control system designed by this method has the better command tracking performance than that of the control system designed by the trial-and-error method. The effectiveness of this control system is verified by computer simulation.

Multi-type sensor placement design for damage detection

  • Li, Y.Q.;Zhou, M.S.;Xiang, Z.H.;Cen, Z.Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.357-368
    • /
    • 2008
  • The result of damage detection from on-site measurements is commonly polluted by unavoidable measurement noises. It is widely recognized that this side influence could be reduced to some extent if the sensor placement was properly designed. Although many methods have been proposed to find the optimal number and location of mono-type sensors, the optimal layout of multi-type sensors need further investigation, because a network of heterogeneous sensors is commonly used in engineering. In this paper, a new criterion of the optimal placement for different types of sensors is proposed. A corresponding heuristic is developed to search for good results. In addition, Monte Carlo simulation is suggested to design a robust damage detection system which contains certain redundancies. The validity of these methods is illustrated by two bridge examples.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

Q-Learning Policy and Reward Design for Efficient Path Selection (효율적인 경로 선택을 위한 Q-Learning 정책 및 보상 설계)

  • Yong, Sung-Jung;Park, Hyo-Gyeong;You, Yeon-Hwi;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.72-77
    • /
    • 2022
  • Among the techniques of reinforcement learning, Q-Learning means learning optimal policies by learning Q functions that perform actionsin a given state and predict future efficient expectations. Q-Learning is widely used as a basic algorithm for reinforcement learning. In this paper, we studied the effectiveness of selecting and learning efficient paths by designing policies and rewards based on Q-Learning. In addition, the results of the existing algorithm and punishment compensation policy and the proposed punishment reinforcement policy were compared by applying the same number of times of learning to the 8x8 grid environment of the Frozen Lake game. Through this comparison, it was analyzed that the Q-Learning punishment reinforcement policy proposed in this paper can significantly increase the learning speed compared to the application of conventional algorithms.