Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.5.545

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof  

Wang, X.C. (College of Civil Engineering and Architecture, Zhejiang University)
Teng, Q. (College of Civil Engineering and Architecture, Zhejiang University)
Duan, Y.F. (College of Civil Engineering and Architecture, Zhejiang University)
Yun, C.B. (College of Civil Engineering and Architecture, Zhejiang University)
Dong, S.L. (College of Civil Engineering and Architecture, Zhejiang University)
Lou, W.J. (College of Civil Engineering and Architecture, Zhejiang University)
Publication Information
Smart Structures and Systems / v.26, no.5, 2020 , pp. 545-558 More about this Journal
Abstract
A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.
Keywords
multiple tuned mass dampers; vibration control; cable-supported roof; SQP with multi-start; NSGA-II;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Zahrai, S.M. and Froozanfar, M. (2019), "Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge", Smart Struct. Syst., Int. J., 23(5), 449-466. https://doi.org/10.12989/sss.2019.23.5.449.
2 Zheng, H., Pau, G.S.H. and Wang, Y.Y. (2006), "A comparative study on optimization of constrained layer damping treatment for structural vibration control", Thin-Wall. Struct., 44(8), 886-896. https://doi.org/10.1016/j.tws.2006.08.005.   DOI
3 Zhou, H.J., Yang, X., Pang, Y.R., Zhou, R., Sun, L.M. and Xing, F. (2019), "Damping and frequency of twin-cables with a crosslink and a viscous damper", Smart Struct. Syst., Int. J., 23(6), 669-682. https://doi.org/10.12989/sss.2019.23.6.669.
4 Zi, B., Zhu, Z.C. and Du, J.L. (2011), "Analysis and control of the cable-supporting system including actuator dynamics", Control Eng. Pract., 19(5), 491-501. https://doi.org/10.1016/j.conengprac.2011.02.001.   DOI
5 Chung, T.T., Cho, S., Yun, C.B. and Sohn, H. (2012), "Finite element model updating of Canton Tower using regularization technique", Smart Struct. Syst., Int. J., 10(4-5), 459-470. https://doi.org/10.12989/sss.2012.10.4_5.459.   DOI
6 Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802.   DOI
7 Bagheri, M.R., Mosayebi, M., Mandian, A. and Keshavarzi, A. (2018), "Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGAII for ride comfort and ride safety", Smart Struct. Syst., Int. J., 22(4), 469-479. https://doi.org/10.12989/sss.2018.22.4.469.
8 Boggs, P.T. and Tolle, J.W. (2000), "Sequential quadratic programming for large-scale nonlinear optimization", J. Comput. Appl. Math., 124(1-2), 123-137. https://doi.org/10.1016/S0377-0427(00)00429-5.   DOI
9 Cardenas, R.A., Viramontes, F.J.C., Gonzalez, A.D. and Ruiz, G.H. (2008), "Analysis for the optimal location of cable damping systems on stayed bridges", Nonlinear Dyn., 52(4), 347-359. https://doi.org/10.1007/s11071-007-9283-5.   DOI
10 Chen, X., Li, A.Q., Zhang, Z.Q., Zhou, G.D. and Cao, L.L. (2017), "Optimization design of MTMD for vibration comfort control of long-span roof structure", J. Vib. Eng., 2017(5), 827-836. https://doi.org/10.16385/j.cnki.issn.1004-4523.2017.05.016.
11 Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.   DOI
12 Debnath, N., Dutta, A. and Deb, S.K. (2016), "Multi-modal passive-vibration control of bridges under general loadingcondition", Procedia Eng., 144, 264-273. https://doi.org/10.1016/j.proeng.2016.05.132.   DOI
13 Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using magnetorheological dampers", J. Intell. Mater. Syst. Struct., 17(4), 321-325. https://doi.org/10.1142/9789812702197_0121.   DOI
14 Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer, B.F., Ko, J.M. and Dong, S.H. (2019a), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537.
15 Etedali, S. and Rakhshani, H. (2018), "Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations", Alex. Eng. J., 57(4), 3205-3218. https://doi.org/10.1016/j.aej.2018.01.009.   DOI
16 Duan, Y.F., Wang, X.C., Dong, S.H. and Teng, Q. (2019b), "Technical report on wind-induced vibration analysis and vibration control for the Shijiazhuang international exhibition center", College of Civil Engineering and Architecture, Zhejiang University, Zhejiang, China.
17 Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.   DOI
18 Elias, S., Matsagar, V. and Datta, T.K. (2017), "Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations", J. Earthq. Eng., 23(7), 1137-1172. https://doi.org/10.1080/13632469.2017.1351407.
19 Frans, R. and Arfiadi, Y. (2015), "Designing optimum locations and properties of MTMD systems", Civ. Eng. Innov. Sustain., 125, 892-898. https://doi.org/10.1016/j.proeng.2015.11.079.
20 Fujino, Y. (2002), "Vibration, control and monitoring of long-span bridges - recent research, developments and practice in Japan", J. Constr. Steel Res., 58(1), 71-97. https://doi.org/10.1016/S0143-974X(01)00049-9.   DOI
21 Hansen, P.C. and Oleary, D.P. (1993), "The use of the L-curve in the regularization of discrete ill-posed problems", Siam J. Sci. Comput., 14(6), 1487-1503. https://doi.org/10.1137/0914086.   DOI
22 Holland, J. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, USA.
23 Lavan, O. (2017), "Multi-objective optimal design of tuned mass dampers", Struct. Control Health Monit., 24(11), e2008. https://doi.org/10.1002/stc.2008.   DOI
24 Hussan, M., Rahman, M.S., Sharmin, F., Kim, D. and Do, J. (2018), "Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation", Ocean Eng., 160, 449-460. https://doi.org/10.1016/j.oceaneng.2018.04.041.   DOI
25 Izui, K., Yamada, T., Nishiwaki, S. and Tanaka, K. (2015), "Multiobjective optimization using an aggregative gradientbased method", Struct. Multidiscipl. Optim., 51(1), 173-182. https://doi.org/10.1007/s00158-014-1125-8.   DOI
26 Jin, Z.L., Yang, Y.W. and Soh, C.K. (2010), "Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure vibration control", Smart Struct. Syst., Int. J., 6(7), 767-792. https://doi.org/10.12989/sss.2010.6.7.767.   DOI
27 Jin, S.S., Cho, S., Jung, H.J., Lee, J.J. and Yun, C.B. (2014), "A new multi-objective approach to finite element model updating", J. Sound Vib., 333(11), 2323-2338. https://doi.org/10.1016/j.jsv.2014.01.015.   DOI
28 Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2015), "Optimum design of steel frame structures considering construction cost and seismic damage", Smart Struct. Syst., Int. J., 16(1), 1-26. https://doi.org/10.12989/sss.2015.16.1.001.   DOI
29 Lu, L., Duan, Y.F., Spencer, B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monit., 24(10), e1986. https://doi.org/10.1002/stc.1986.   DOI
30 Marti, R. (2003), Handbook of Metaheuristics, Springer, Boston, USA.
31 Pourzeynali, S., Salimi, S. and Eimani Kalesar, H. (2013), "Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms", Sci. Iran., 20(2), 207-221. https://doi.org/10.1016/j.scient.2012.11.015.
32 MathWorks (2020), Optimization Toolbox User's Guide, Matlab, USA.
33 Miguel, L.F.F., Lopez, R.H., Torii, A.J., Miguel, L.F.F. and Beck, A.T. (2016), "Robust design optimization of TMDs in vehiclebridge coupled vibration problems", Eng. Struct., 126, 703-711. https://doi.org/10.1016/j.engstruct.2016.08.033.   DOI
34 Nezami, M. and Gholami, B. (2016), "Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method", Smart Mater. Struct., 25(3), 035043. https://doi.org/10.1088/0964-1726/25/3/035043.   DOI
35 Niu, H.W., Chen, Z.Q., Hua, X.G. and Zhang, W. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727.
36 Ok, S.Y., Song, J. and Park, K.S. (2008), "Optimal performance design of bi-tuned mass damper systems using multi-objective optimization", KSCE J. Civ. Eng., 12(5), 313-322. https://doi.org/10.1007/s12205-008-0313-8.   DOI
37 Repetto, M.P. and Solari, G. (2001), "Dynamic alongwind fatigue of slender vertical structures", Eng. Struct., 23(12), 1622-1633. https://doi.org/10.1016/S0141-0296(01)00021-9.   DOI
38 Siinivas, N. and Deb, K. (1994), "Multiobjective optimization using nondominated sorting in genetic algorithms", Evol. Comput., 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221.   DOI
39 Tao, T.Y., Wang, H., Yao, C.Y. and He, X.H. (2017), "Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD", Appl. Sci. Basel, 7(4), 395. https://doi.org/10.3390/app7040395.
40 Tributsch, A. and Adam, C. (2012), "Evaluation and analytical approximation of tuned mass damper performance in an earthquake environment", Smart Struct. Syst., Int. J., 10(2), 155-179. https://doi.org/10.12989/sss.2012.10.2.155.   DOI
41 Vellar, L.S., Ontiveros-Perez, S.P., Miguel, L.F.F. and Miguel, L.F.F. (2019), "Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation", Shock Vib., 2019, 9273714. https://doi.org/10.1155/2019/9273714.
42 Wang, C. and Shi, W.X. (2019), "Optimal design and application of a multiple tuned mass damper system for an in-service footbridge", Sustainability, 11(10), 2801. https://doi.org/10.3390/su11102801.   DOI
43 Wang, D.Y., Wu, C.Q., Zhang, Y.S. and Li, S.W. (2019a), "Study on vertical vibration control of long-span steel footbridge with tuned mass dampers under pedestrian excitation", J. Constr. Steel Res., 154, 84-98. https://doi.org/10.1016/j.jcsr.2018.11.021.   DOI
44 Wang, Z.H., Gao, H., Xu, Y.W., Chen, Z.Q. and Wang, H. (2019b), "Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations", Smart Struct. Syst., Int. J., 24(1), 83-94. https://doi.org/10.12989/sss.2019.24.1.083.
45 Wang, L.K., Shi, W.X., Zhou, Y. and Zhang, Q.W. (2020), "Semiactive eddy current pendulum tuned mass damper with variable frequency and damping", Smart Struct. Syst., Int. J., 25(1), 65-80. http://dx.doi.org/10.12989/sss.2020.25.1.065
46 Warnitchai, P. and Hoang, N. (2006), "Optimal placement and tuning of multiple tuned mass dampers for suppressing multimode structural response", Smart Struct. Syst., Int. J., 2(1), 1-24. https://doi.org/10.12989/sss.2006.2.1.001.   DOI
47 Xu, K.M. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng. Struct. Dyn., 21(12), 1059-1070. https://doi.org/10.1002/eqe.4290211203.   DOI