본 논문은 전력품질 향상을 목적으로 VSC의 새로운 제어 기법의 디자인에 대하여 기술하였다. 전압강하의 빠른 검출 기술은 동기 회전 d q-기준축에서 순시값의 검출을 통해서 구현되었다. 1차 디지털 필터는 노이즈에 대하여 둔감한 특성을 막을 수 있는 검출 알고리즘을 부가하였다. 필터의 전체 검출과 컷오프 주파수 사이에서 관계에 대하여 기술하였다. 에너지 저장 요소로서 사용되는 캐패시터 뱅크의 사이즈는 회로 해석으로서 입 출력 에너지의 관점에서 디자인 되었다. 마지막으로, 제안된 기법의 유효성은 모의실험을 통하여 증명되었다.
Recently various attempts have been made to apply HSPF model to calculate runoff and diffuse pollution loads of stream and reservoir watersheds. Because the role of standard flow is very important in the water quality modelling of Total Water Pollution Load Management, HSPF was used as a means of estimating standard flow. In this study, BASINS 4.0 and WinHSPF was applied to the Gomakwoncheon watershed, genetic algorithm(GA) and influence coefficient algorithm were used to calibrate the runoff parameters of the WinHSPF. The objective function is the sum of the squares of the normalized residuals of the observed and calculated flow and it is optimized using GA. Estimates of the optimum runoff parameters are made at each iteration of the influence coefficient algorithm. The calibration results showed a relatively good correspondence between the observed and the calculated values. The standard flow(Q275) of the Gomakwoncheon watershed was estimated using the ten years of weather data.
The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix $A_r$ by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.
본 논문에서는 음성의 통계적 모델에 기반한 음성검출기의 성능향상을 위해 변별적 가중치 학습(discriminative weight training) 기반의 최적화된 우도비 테스트(Likelihood Ratio Test, LRT)를 제안한다. 먼저, 기존의 통계모델기반의 음성검출기를 분석하고, 이를 기반으로 MCE(minimum classification error)방법을 도입하여, 각 주파수 채널별로 다른 가중치를 가지는 우도비 기반의 음성검출 결정법(decision rule)을 제시한다. 제안된 알고리즘은 비정상(non-stationary)잡음환경에서 기존의 동일 가중치를 가지는 기하 평균 기반의 음성검출기와 비교하였으며, 우수한 성능을 보인다.
본 논문에서는 support vector machine (SVM) 기반의 global soft decison (GSD)을 이용한 새로운 음성 향상 기법을 제시한다. 일반적으로 soft decision (SD) 이득 수정 및 잡음 전력 추정에 근거한 음성 향상 기법이 hard decision을 이용한 음성향상 기법 보다 우수한 성능을 보이는 것으로 알려져 있다. 특히, 각 프레임에서의 음성 부재에 대한 효과적인 척도인 전역음성 부재확률 (global speech absence probability, GSAP)을 SD 기반의 음성 향상 기법에 적용한 여러 연구가 진행되었다. 본 논문에서는 sigmoid 함수를 이용하여 얻어진 SVM의 확률 출력에 의해 추정된 새로운 GSAP를 음성 향상 기법에 적용한다. 제안된 알고리즘의 성능은 다양한 잡음 환경에 적용하여 PESQ 및 MOS 평가 방법을 바탕으로 기존의 GSD 기반의 스펙트럼 향상 기법과 비교하여 향상된 결과를 나타내었다.
본 논문에서는 일반화된 공간천이변조시스템에서 신호 복원 성능의 개선을 위하여 병렬 직교매칭퍼슛 기술을 이용한 신호 검출기법을 제안하고 그 성능을 분석한다. 일반화된 공간천이변조 시스템에서 수신신호의 복원은 압축 센싱에서 성긴신호 복원과 매우 유사하다. 성긴 신호 복원에서 자주 사용되는 직교매칭퍼슛 기법은 매 반복과정에서 수신 신호와 채널 행렬과의 상관도가 높은 인덱스를 송신신호의 Nonzero 인덱스로 1개씩 선택한다. 반면 제안된 POMP기법에서는 수신신호를 이용하여 첫 번째 반복과정에서 채널행렬과의 상관도가 높은 인덱스를 복수(M)개 선택한 후, 선택된 M개의 인덱스를 초기 인덱스로 하는 M개의 OMP과정을 병렬적으로 수행한다. 최종적으로 각 OMP과정에서 복원된 신호 중 수신된 신호와 복원신호사이의 잔차 (Residual)가 가장 작은 후보 신호를 최종 복원 신호로 선택한다. 본 논문에서는 POMP기법에 양자화기법을 결합한 알고리즘도 함께 제안한다. 제안된 POMP알고리즘은 OMP대비 M배의 복잡도를 갖지만 신호 복원 성능은 매우 탁월하다.
인덕터 전기 부품을 구성하는 핵심 부품인 링-코어를 물질 특성, 인덕턴스 값 및 Q-값에 따라 10등급으로 분류하는 선별기를 설계하는 데 있어, 한번에 10개의 코어를 동시에 자동 분류할 수 있도록 설계한다. 동시에 10개의 코어를 자동 선별하려면 10개의 측정 장비가 필요한데, 이러한 측정 장비는 대단히 고가이므로, 하나의 측정 장비를 사용하여 10개의 링-코어를 검사한 후, 각각의 등급에 따라서 해당 그릇으로 저장하도록 한다. 이러한 시스템을 개발하는 데 있어서, 초당 0.5개의 생산 속도보다 빠른 속도인 초당 1개 정도로 측정 분류할 수 있는 속도가 필요하다. 시스템의 구성물은 먼저 작업 명령을 내려주고, 각종 생산 및 품질 통계를 관리하는 작업 PC와, 100개의 고무호스, 공급기, 측정기, 10개의 등급-상자, 1개의 메인-보드, 10개의 모터-제어-보드, 10개의 모터-드라이버-보드, 10개의 스텝-모터 등으로 구성되어 있다. 따라서 많은 고장, 오동작이 예상된다. 가장 중요한 사항은 일부의 모터 고장, 일부 모터 드라이버 보드 고장, 일부 모터 제어 보드 등의 고장이 발생하여도 작동이 멈추지 않도록 설계하는 것이다. 이를 위하여 센서 회로 추가 및 관련 소프트웨어 알고리즘을 개발한다.
본 논문에서는 국내 서남해안 11개 지역에서 수행된 63회의 피에조콘 시험결과와 176개의 선행압밀하중 자료로부터 국내 연약지반의 선행압밀하중 예측을 위한 오차 역전파 알고리즘으로 학습된 피에조콘 인공신경망 모델을 구축하였다. 전체 자료 중 147개의 자료만이 인공신경망 모델 구축을 위한 학습과정에 사용되었으며 학습에 사용되지 않은 29개의 자료를 구축된 인공신경망의 검증에 활용하였다. 또한 기존의 경험모델 및 이론모델과 비교하여 제안된 인공신경망 모델의 유용성을 확인하였다. 연구를 통하여 4-4-9-1의 구조를 갖는 간단한 다층 인공신경망이 구축되었으며 입력값으로는 피에조콘 선단저항력 $q_T$, 관입간극수압 $u_2$그리고 지반의 총상재하중 $\sigma_{vo}$ 및 유효상재하중 $\sigma'_{vo}$ 이 사용되었다. 제안된 인공신경망 모델은 학습되지 않은 새로운 검증자료에 대한 예측을 통하여 입력변수들과 선행압밀 하중 간의 비선형적 상관관계를 성공적으로 모델하는 것으로 검증되었으며 정확성면에서는 기존의 이론모델과 국내외 경험모델과 비교할 때 월등히 향상된 예측능력을 가진 것으로 나타났다. 뿐만 아니라 제안된 모델은 국내 특정지 역에 대한 모델이 아니라 서남해안의 다양한 지반특성을 갖는 지반에서 수행된 자료를 바탕으로 구축되어 데이터베이스에 포함되지 않은 지역에 대하여도 매우 타당성있는 예측결과를 주어 특정지역에 국한된 지역의존적 예측이 아닌 일반화된 지역에서 적용할 수 있을 것으로 판단된다.
P파는 심장의 전기적, 생리적 특성을 나타내는 파라미터로써 심방성 부정맥 진단에 있어 매우 중요하다. 하지만 R파에 비해 신호의 크기가 작고 그 형태가 다양하여 검출에 많은 어려움이 있다. P 파를 검출하기 위한 기존 연구방법으로는 주파수 분석과 비선형 접근방법 등이 제안되어 왔지만 방실 차단과 같은 전도 이상이나 심방성 부정맥의 경우에는 검출 정확도가 낮아진다. 이는 심장 상태에 따라 다양한 모양의 P파의 패턴이 존재하기 때문이다. 본 연구에서는 QRS 피크 변화에 따른 P파의 패턴을 분류하고 적응형 문턱치를 이용하여 P파를 검출하는 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 Q, R, S를 검출한다. 이후 피크 변화에 따른 P파의 3가지 패턴을 분류하고 적응형 윈도우와 문턱치를 통해 P파를 검출하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 한 P파의 평균 검출율은 92.60%의 성능을 나타내었다.
홀터 심전계는 심장 이상으로 인한 급사 위험이 있는 환자를 위한 비관혈인 진단 장비이다. 본 연구에서는 일상생활 중에 심전도 데이터를 획득할 수 있도록 원칩 마이크로프로세서와 대용량메모리인 플레쉬 메모리(flash memory) 카드를 이용하여 2채널의 홀터 심전계를 설계하였다. 시스템 하드웨어는 크게 원칩 마이크로프로세서(68HC11E9)의 아날로그 심전도 처리회로, 플레쉬 메모리 카드로 구성하였다. 아날로그 심전도 처리회로는 250,500,1000의 이득을 갖는 증폭기와 0.05-100Hz의 대역폭을 갖는 대역통과 필터, 호흡으로 인한 기저선의 이동을 제거하기 위한 auto-balancing 회로와 포화-보정회로를 사용하였다. 심전도 신호는 240샘플/초 샘플링하여 A/D 변환하였다. 심전도는 필터링 및 전처리 과정을 통하여 특징점인 Q-R-T파를 검출하고, 이를 근거로 템플리트 생성, ST레벨, 심박수, QT간격 측정과 부정맥을 검출하였다. 또한 장시간동안의 심전도 데이터와 측정된 진단파라미터를 저장하기 위해 실시간 압축 알고리즘인 MFan과 delta modulation 방법을 이용하여 데이터를 압축, 저장하였다. 20M 바이트 용량의 플레쉬 메모리 카드에 기록된 데이터는 PC의 DOS나 Windows 환경의 ambulatory monitoring 분석시스템과 쉽게 인터페이스가 가능하도록 FFS(Flash File System)의 호환 가능한 SBF(Symetric Block format)포맷으로 저장하여 분석시스템에서 데이터 처리 및 관리할 수 있게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.