• Title/Summary/Keyword: Q&A

검색결과 11,274건 처리시간 0.04초

ON A q-FOCK SPACE AND ITS UNITARY DECOMPOSITION

  • Ji, Un-Cig;Kim, Young-Yi
    • 대한수학회보
    • /
    • 제43권1호
    • /
    • pp.53-62
    • /
    • 2006
  • A Fock representation of q-commutation relation is studied by constructing a q-Fock space as the space of the representation, the q-creation and q-annihilation operators (-1 < q < 1). In the case of 0 < q < 1, the q-Fock space is interpolated between the Boson Fock space and the full Fock space. Also, a unitary decomposition of the q-Fock space $(q\;{\neq}\;0)$ is studied.

The Limits of Bivariate Q-Q Plots Based on Matching that Minimizes a Distance

  • Kim, Nam-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.645-658
    • /
    • 1999
  • One of the most popular graphical techniques for goodness of fit problems is the quantile-quantile plot(Q-Q plot) Easton and McCulloch(1990) suggested a way of generalizing Q-Q plots to multivariate cases bases on finding a matching between the points of the data set whose shape is being examined and a reference sample. in this paper we investigated the asymptotic behavior of the generalized Q-Q plot for bivariate cases. As a result we concluded that the standard univariate Q-Q plot and the generalized Q-Q plot have the same limit if two variables are independent.

  • PDF

ON THE CHROMATICITY OF THE 2-DEGREE INTEGRAL SUBGRAPH OF q-TREES

  • Li, Xiaodong;Liu, Xiangwu
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.155-167
    • /
    • 2007
  • A graph G is called to be a 2-degree integral subgraph of a q-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactly q - 1 triangles. An added-vertex q-tree G with n vertices is obtained by taking two vertices u, v (u, v are not adjacent) in a q-trees T with n - 1 vertices such that their intersection of neighborhoods of u, v forms a complete graph $K_{q}$, and adding a new vertex x, new edges xu, xv, $xv_{1},\;xv_{2},\;{\cdots},\;xv_{q-4}$, where $\{v_{1},\;v_{2},\;{\cdots},\;v_{q-4}\}\;{\subseteq}\;K_{q}$. In this paper we prove that a graph G with minimum degree not equal to q - 3 and chromatic polynomial $$P(G;{\lambda})\;=\;{\lambda}({\lambda}-1)\;{\cdots}\;({\lambda}-q+2)({\lambda}-q+1)^{3}({\lambda}-q)^{n-q-2}$$ with $n\;{\geq}\;q+2$ has and only has 2-degree integral subgraph of q-tree with n vertices and added-vertex q-tree with n vertices.

역가우스분포에 대한 적합도 평가를 위한 그래프 방법 (A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.37-47
    • /
    • 2013
  • Q-Q 플롯은 자료에 대한 분포적 가정을 평가하기 위해서 사용되는 편리하고 효과적인 그래프 방법이다. Q-Q 플롯은 자료의 분포와 이론적 분포를 비교하기 위한 확률플롯으로 자료에서의 분위수와 이에 대응하는 이론적 분위수를 각각 수직축과 수평축으로 해서 그린 산점도의 형태를 취한다. 본 논문에서는 확률변수 X가 위치모수 ${\mu}$와 척도수 ${\lambda}$를 가지는 역가우스분포를 따르면, 변환된 확률변수 $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$는 평균이 0이고 분산이 1인 표준반접정규분포를 하게 되는 분포적 결과를 활용하여 역가우스분포 Q-Q 플롯의 구축방법을 소개한다. 역가우스분포와 다른 분포를 따르는 자료를 대상으로 그린 Q-Q 플롯에서 나타나는 점들의 형태를 알아보고자 모의실험을 수행하고 그 결과를 제시한다. 실제 자료에 대한 사례분석을 통해 제안한 Q-Q 플롯의 유용성을 보인다.

TWO DIMENSIONAL ARRAYS FOR ALEXANDER POLYNOMIALS OF TORUS KNOTS

  • Song, Hyun-Jong
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.193-200
    • /
    • 2017
  • Given a pair p, q of relative prime positive integers, we have uniquely determined positive integers x, y, u and v such that vx-uy = 1, p = x + y and q = u + v. Using this property, we show that$${\sum\limits_{1{\leq}i{\leq}x,1{\leq}j{\leq}v}}\;{t^{(i-1)q+(j-1)p}\;-\;{\sum\limits_{1{\leq}k{\leq}y,1{\leq}l{\leq}u}}\;t^{1+(k-1)q+(l-1)p}$$ is the Alexander polynomial ${\Delta}_{p,q}(t)$ of a torus knot t(p, q). Hence the number $N_{p,q}$ of non-zero terms of ${\Delta}_{p,q}(t)$ is equal to vx + uy = 2vx - 1. Owing to well known results in knot Floer homology theory, our expanding formula of the Alexander polynomial of a torus knot provides a method of algorithmically determining the total rank of its knot Floer homology or equivalently the complexity of its (1,1)-diagram. In particular we prove (see Corollary 2.8); Let q be a positive integer> 1 and let k be a positive integer. Then we have $$\begin{array}{rccl}(1)&N_{kq}+1,q&=&2k(q-1)+1\\(2)&N_{kq}+q-1,q&=&2(k+1)(q-1)-1\\(3)&N_{kq}+2,q&=&{\frac{1}{2}}k(q^2-1)+q\\(4)&N_{kq}+q-2,q&=&{\frac{1}{2}}(k+1)(q^2-1)-q\end{array}$$ where we further assume q is odd in formula (3) and (4). Consequently we confirm that the complexities of (1,1)-diagrams of torus knots of type t(kq + 2, q) and t(kq + q - 2, q) in [5] agree with $N_{kq+2,q}$ and $N_{kq+q-2,q}$ respectively.

Polynomials satisfying f(x-a)f(x)+c over finite fields

  • Park, Hong-Goo
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.277-283
    • /
    • 1992
  • Let GF(q) be a finite field with q elements where q=p$^{n}$ for a prime number p and a positive integer n. Consider an arbitrary function .phi. from GF(q) into GF(q). By using the Largrange's Interpolation formula for the given function .phi., .phi. can be represented by a polynomial which is congruent (mod x$^{q}$ -x) to a unique polynomial over GF(q) with the degree < q. In [3], Wells characterized all polynomial over a finite field which commute with translations. Mullen [2] generalized the characterization to linear polynomials over the finite fields, i.e., he characterized all polynomials f(x) over GF(q) for which deg(f) < q and f(bx+a)=b.f(x) + a for fixed elements a and b of GF(q) with a.neq.0. From those papers, a natural question (though difficult to answer to ask is: what are the explicit form of f(x) with zero terms\ulcorner In this paper we obtain the exact form (together with zero terms) of a polynomial f(x) over GF(q) for which satisfies deg(f) < p$^{2}$ and (1) f(x+a)=f(x)+c for the fixed nonzero elements a and c in GF(q).

  • PDF

ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF DIMENSION 6

  • Cheon, Eun-Ju;Kato, Takao
    • 대한수학회보
    • /
    • 제45권3호
    • /
    • pp.419-425
    • /
    • 2008
  • For $q^5-q^3-q^2-q+1{\leq}d{\leq}q^5-q^3-q^2$, we prove the non-existence of a $[g_q(6,d),6,d]_q$ code and we give a $[g_q(6,d)+1,6,d]_q$ code by constructing appropriate 0-cycle in the projective space, where $g_q (k,d)={{\sum}^{k-1}_{i=0}}{\lceil}\frac{d}{q^i}{\rceil}$. Consequently, we have the minimum length $n_q(6,d)=g_q(6,d)+1\;for\;q^5-q^3-q^2-q+1{\leq}d{\leq}q^5-q^3-q^2\;and\;q{\geq}3$.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

THE RELATION PROPERTY BETWEEN THE DIVISOR FUNCTION AND INFINITE PRODUCT SUMS

  • Kim, Aeran
    • 호남수학학술지
    • /
    • 제38권3호
    • /
    • pp.507-552
    • /
    • 2016
  • For a complex number q and a divisor function ${\sigma}_1(n)$ we define $$C(q):=q{\prod_{n=1}^{\infty}}(1-q^n)^{16}(1-q^{2n})^4,\\D(q):=q^2{\prod_{n=1}^{\infty}}(1-q^n)^8(1-q^{2n})^4(1-q^{4n})^8,\\L(q):=1-24{\sum_{n=1}^{\infty}}{\sigma}_1(n)q^n$$ moreover we obtain the number of representations of $n{\in}{\mathbb{N}}$ as sum of 24 squares, which are possible for us to deduce $L(q^4)C(q)$ and $L(q^4)D(q)$.