Journal of The Korean Association of Information Education
/
v.22
no.1
/
pp.53-60
/
2018
In this study we have developed a Python education program that can be applied to students who have studied block-based coding. We have developed a Python education program based on the extracted the learners' level of block-based coding by analyzing the programs and the textbooks. We extracted the grammar of the block-based coding and constructed the curriculum. Then, the Python education program was composed by 16 hours. After reviewing the appropriateness of the education program through expert validation, it was concluded that the developed Python education program is suitable for applying to learners of block-based coding. We expect that proposed program will be effectively applied as basic resources to learn script coding in class.
Park, Ki Ryoung;Park, So Hee;Kim, Jun seo;Koo, Dukhoi
한국정보교육학회:학술대회논문집
/
2021.08a
/
pp.141-148
/
2021
The mainstream tool for software education for elementary students is Educational Programming Language. It is essential for upper graders to advance from EPL to text based programming language. However, many students experience difficulty in adopting to this change since Python is run in English. Python is an actively used TPL. This study focuses on developing an education program to facilitate learning Python for Korean speaking students. We have extracted the necessary reserved words needed for data analysis in Python. Then we replaced the extracted words into Korean terms that could be understood in elementary level. The replaced terms were matched on one-to-one correspondence with reserved words used in Python. This devised program would assist students in experiencing data analysis with Python. We expect that this education program will be applied effectively as a basic resource to learn TPL.
The impact of programming languages in the research sector has helped lot of researchers to broaden their view and extend their work without any limitation. More importantly, even the complex problems can be solved in no matter of time while converting them into a programming language. This convenience provides upper hand for the researchers as it places them in a comfort zone where they can work without much stress. With this context, we have converted the research problems in Topology into programming language with the help of Python. In this paper, we have developed a Python program to find the weaker form of closed sets namely alpha closed set, semi closed set, pre closed set, beta closed set and regular closed set.
International journal of advanced smart convergence
/
v.11
no.4
/
pp.68-80
/
2022
Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.
A 1-year-old, male, captive born Burmese Python (Python molurus bivittatus) presented with cloudiness of the left eye after ecdysis. Based on physical examination and history, subspectacular abscess was diagnosed. The causative microorganism was identified as a methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a zoonotic problem of high concern and is a risk in public health and veterinary medicine. To our limited knowledge, this is the first reported case of MRSA infection in snakes.
International journal of advanced smart convergence
/
v.11
no.1
/
pp.11-18
/
2022
Securities and investment services have and use large data. Investors started to invest through their own analysis methods. There are 22 major securities and investment companies in Korea and only 6 companies support open API. Python is effective for requesting and receiving, analyzing text data from open API. Daishin Securities Co. is the only open API that officially supports Python, and eBest Investment & Securities Co. unofficially supports Python. There are two important differences between CYBOS plus of Daishin Securities Co. and xingAPI of eBest Investment & Securities Co. First, we must log in to CYBOS plus to access the server of Daishin Securities Co. And the python program does not require a logon. However, to receive data using xingAPI, users log on in an individual Python program. Second, CYBOS plus receives data in a Request/Reply method, and zingAPI receives data through events. It can be thought that these points will show a difference in response time. Response time is important to users who use open APIs. Data were measured from August 5, 2021, to February 3, 2022. For each measurement, 15 repeated measurements were taken to obtain 420 measurements. To increase the accuracy of the study, both APIs were measured alternately under same conditions. A paired t-test was performed to test the hypothesis that the null hypothesis is there was no difference in means. The p-value is 0.2961, we do not reject null hypothesis. Therefore, we can see that there is no significant difference between means. From the boxplot, we can see that the distribution of the response time of eBest is more spread out than that of Cybos, and the position of the center is slightly lower. CYBOS plus has no restrictions on Python programming, but xingAPI has some limits because it indirectly supports Python programming. For example, there is a limit to receiving more than one current price.
OncoPrint, the plot to visualize an overview of genetic variants in sequencing data, has been widely used in the field of cancer genomics. However, still, there have been no Python libraries capable to generate OncoPrint yet, a big hassle to plot OncoPrints within Python-based genetic variants analysis pipelines. This paper introduces a new Python package PyOncoPrint, which can be easily used to plot OncoPrints in Python. The package is based on the existing widely used scientific plotting library Matplotlib, the resulting plots are easy to be adjusted for various needs.
This study intended to analyze effects of education of python through meta-analysis. The researcher selected five primary studies reporting statistical data after implementing education of python in elementary classroom settings. Three research questions were stated. What is the total effect size of education of python? What are effect sizes of publication type, dependent variable, and etc.? What are results of meta-regression analysis by grade level, period, and etc.? Findings are as follows. The overall effect size was .598, which is medium. For categorical variables, the effect size of peer-reviewed journal articles was larger than theses. The effect size of affective domain was larger than student achievement and cognitive domain. For meta-regression analysis, education of python was more effective as the period and duration of the program increased. Finally, discussions and recommendations including qualitative investigation on affective domain and program management considering characteristics were presented regarding research findings.
International Journal of Advanced Culture Technology
/
v.9
no.1
/
pp.203-209
/
2021
When carrying out computer programming, the process of checking and correcting errors in the source code is essential work for the completion of the program. Non-computer majors who are learning programming for the first time receive feedback from instructors to correct errors that occur when writing the source code. However, in a learning environment where the time for the learner to practice alone is long, such as an online learning environment, the learner starts to feel many difficulties in solving program errors by himself/herself. Therefore, training on how to check and correct errors after writing the program source code is necessary. In this paper, various types of errors that can occur in a Python program were described, the errors were classified into simple errors and complex errors according to the characteristics of the errors, and the distributions of errors by Python grammar category were analyzed. In addition, a coding learning process to refer error lists was designed to present a coding learning method that enables learners to solve program errors by themselves.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.271-274
/
2019
In this paper, we proposed a detailed address acquisition scheme for automatically collecting data of a web page in a frame that is difficult to access by a general web access method. Using the Python language and the Beautiful Soup library, which can utilize the proposed address resolution technique and the HTML selector, we were able to automatically collect all the bulletin board text data written in several pages. By using the proposed method, we can collect large amount of data automatically by Python web scraping program for web pages of any form of address, and we expect that it can be used for big data analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.