• Title/Summary/Keyword: Pyruvate

Search Result 633, Processing Time 0.028 seconds

Asymmetric Hydrogenation of Ethyl Pyruvate over Bimetallic Rh-Pt/Al2O3 Catalysts Modified with Dihydrocinchonidine (Dihydrocinchonidine으로 개질된 Rh-Pt/Al2O3 이원금속 촉매를 이용한 Ethyl Pyruvate의 비대칭 수소화)

  • Cho, Hong-Baek;Kang, Joon-seok;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.369-374
    • /
    • 2006
  • $Rh-Pt/Al_{2}O_{3}$ catalysts were used for the first time to study its reaction characteristics in the asymmetric hydrogenation of ethyl pyruvate. The catalysts were prepared either by impregnation of Rh on a commercial $Pt/Al_{2}O_{3}$ or by sequential impregnation of Rh followed by impregnation of Pt on $Al_{2}O_{3}$. Reaction rate and enantiomeric excess (ee%) were compared according to the preparation method, Rh contents, and the reduction temperature of the catalyst. The physical characteristics of the catalysts were analyzed using XRD and TEM. Bimetallic $Rh-Pt/Al_{2}O_{3}$ catalysts showed an improved reaction rate and optical purity (63.6 ee%) with increasing the reduction temperature. The variation of the Rh contents as well as the preparation method elicited a big difference on the reaction rate, while enantiomeric excess (ee%) was lower (56~60%) with all bimetallic catalysts than with monometallic $Pt/Al_{2}O_{3}$ catalyst.

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

The Effects of Metabolic Substrates on Contractility of Isolated Rat Atria Depressed with Bupivacaine (Bupivacaine에 의해 억제된 심근수축력에 대한 대사기질의 영향)

  • Park, Seung-Joon;Chang, Joo-Ho;Jung, Jee-Chang;Ko, Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • A concentration of 0.01 mM bupivacaine was necessary to maintain approximately 50% depression of contractility of rat atria suspended in a modified Krebs-Ringer bicarbonate glucose medium, pH 7.4 at $30^{\circ}C$. Sodium pyruvate, sodium acetate, and fructose partially restored the contractility of the bupivacaine-depressed atria. However, 20 mM glucose had no effect on the bupivacaine-depressed atria, although this concentration of glucose markedly increased the contractility of normal atria not to be exposed to bupivacaine. Contractility of normal atria was not significantly influenced by sodium pyruvate, sodium acetate, and fructose. The results suggested that at least part of the negative inotropic action of bupivacaine is the result of inhibition of glucose uptake or utilization in the glycolytic pathway, and further pinpoint the blockade as an early step in the glycolytic sequence prior to the phosphofructokinase step.

  • PDF

Purification, Kinetics and Immunochemistry of Two Homotetrameric Lactate Dehydrogenase Isozymes in Pseudogobio esocinlus (Cypriniformes) (Pseudogobio esocinus (Cypriniformes) 젖산수소이탈효소 동질사량체들의 정제, 역학 및 면역화학)

  • 김명옥;염정주
    • The Korean Journal of Zoology
    • /
    • v.32 no.4
    • /
    • pp.420-428
    • /
    • 1989
  • Pseudogobio esocinus의 심장, 신장 및 간 조직은 하부단위체 C를 함유하는 젖산수소이탈효소를 갖고 있음이 확인되었다. 하부단위체 A 및 B에 대한 유전자들의 조직 발현은 다른 포유동물의 것과 유사하였으며 분자량은 140,000 정도로 추정되었다. Oxamate gel을 사용한 chromatography결과 A4 동위효소는 NAD+보다는 column buffer에 의해 용출되었다. B4 동위효소는 CM-Sepharose column을 사용하여 부붙 정제되었다. B4 동위효소는 물론 A4 동위효소도 고농도의 Pyruvate에 의해 저해되었다. A4 동위효소의 affinity chromatography 상 행동과 Pyruvate 저해 정도로 보아 A4 등위효소는 B4 동위효소 두 역학적으로 유사하다고 사료된다. P. esainus A4 동위효소에 대한 항체는 mouse A4 등위효소와 반응하지만 동종의 B4 동위 효소와는 반응하지 않는 특성으로 보아 하부단위체 B는 진화과정에서 보존성이 낮은 것으로 사료된다. Three tissues of heart, kidney and liver of a primitive cvprinid Pseudogobio esocinus were found to have lactate dehydrogenase isozyme(5) containing subunit C. Tissue expressions of genes for subunits A and B were similar to those of mammalian species. Molecular weight of the isozymes were estimated to be 140,000 approximately. Affinity chromatography of the isozymes on the immobilized oxamate gel revealed that A4 isozyme was not elected in NAD+ but in column buffer. B4 isozune was isozpnatically purified by subjecting kidney extract to a CM-Sepharose column. Ae isozvme as well as B4 isozvme was inhibited by high concentrations of pyruvate. The affinity chromatographic behavior and susceptibility to pyruvate inhibition of the A4 isorpne suggest that A4 isozwne is similar to B4 isozyme kinetically. Antibodies against p. esocinus A4 isogyme reacted with mouse At isozyme but not with p. esocinus B4 isogyme, reflecting that subunit B is less conservative in its evolution.

  • PDF

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis

  • Song, Hyun-Ouk
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.71-74
    • /
    • 2016
  • Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

Functional Amino Acid Residues of Recombinant Tobacco Acetolactate Synthase

  • Chong, Chom-Kyu;Chang, Soo-Ik;Choi, Jung-Do
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.258-263
    • /
    • 1998
  • Acetolactate synthase (ALS) is the common enzyme in the biosynthetic pathways leading to leucine, valine, and isoleucine. Tobacco ALS was expressed in E. coli and purified to homogeneity. The recombinant tobacco ALS was inactivated by thiol-specific reagents, N-ethylmaleimide (NEM) and 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Inactivation of the ALS by NEM followed pseudo-first order kinetics and was first order with respect to the modifier. The substrate pyruvate protected the enzyme against the inactivation by NEM and DTNB. Extrapolation to complete inactivation of the enzyme by DTNB showed modification of approximately 2 out of 4 total cysteinyl residues (or 2 cysteinyl and 1 cysteinyl residues), with approximately 1 residue protected by pyruvate. The tobacco ALS was also inactivated by the tryptophanspecific reagent, N-bromosuccinimide (NBS), and was similarly protected by pyruvate. The kinetics of the inactivation was first-order with respect to NBS. The present data suggest that cysteinyl and tryptophanyl residues play a key role in the catalytic function of the enzyme.

  • PDF

L-Cysteine Metabolism and the Effects on Mycelium growth of Streptomyces albidoflavus SMF301 in Submerged Culture

  • Lee, Kye-Joon;Kim, Jong-Woong;Kang, Sung-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.159-164
    • /
    • 1994
  • Myceliuml growth and spore formation of Streptomyces albidoflavus SMF301 in submerged culture were compared with the metabolism of cysteine. Cysteine added to the culture was metabolized by cysteine desulfhydrase (EC 4.4.1.1.) to produce ammonium ions, hydrogen sulfide, and pyruvate. The redox potential of the culture broth was lowered immediately as the result of the metabolism of cysteine, which caused a lag period of mycelium growth. However enhanced activities of pyruvate dehydrogenase and a-ketoglutarate dehydrogenase were confirmed in the culture containing cysteine, indicating that pyruvate was utilized to support further mycelium growth.

  • PDF

Simultaneous Determination of Plasma Lactate, Pyruvate, and Ketone Bodies following tert-Butyldimethylsilyl Derivatization using GC-MS-SIM

  • Yoon, Hye-Ran
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Lactate and ketone bodies are considered biological markers for ketosis and several inherited metabolic disorders. In the current study, the specific ratios of lactate and ketone bodies as analytical tools for differential diagnosis of various lactic acidosis were devised. The study included a protein precipitation step following tert-butyldimethylsilyl derivatisation. Total run time was approximately 30 min including sample preparation and GS/MS analysis. The limits of detection were below 0.1 pg/mL over the targeted 4 analytes. The calibration curve was linear over the concentration range of $0.001{\sim}250{\mu}g/mL$ for pyruvate, beta-hydroxybutyrate, and acetoacetate ($R^2$ > 0.99). Inter-day accuracy and precision were 87.7~94.8% with RSD of 2.5~5.7% at 2 levels. Absolute recoveries (%) of target analytes were 87.0~98.4%. The method was validated for the quantification of lactate and ketone bodies for differentiation of lactic acidosis.

Effect of Carbon Monoxide Intoxication on the Change in Contents of Cerebral Energy Metabolites of Rats (흰쥐에서의 일산화탄소(一酸化炭素) 중독(中毒)이 뇌(腦)에너지 대사(代謝) 관련물질(關聯物質) 함량변화(含量變化)에 미치는 영향)

  • Yun, Jae-Soon;Choi, Shin-Kyu
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 1989
  • To predict the influence of carbon monoxide poisonining on cerebral energy metabolism, rats were exposed to 5000 ppm environment for 30 minutes. Carboxyhemoglobin (HBCO) saturation rate in this condition was 72% equally in male and female rats. Cerebral cortex in the rats showed lower level of ATP, glucose, creatine phosphate and higher level of lactate, pyruvate by anaerobic glycolysis. As for the levels of ATP, creatine phsphate and glucose, the cerebral cortex contents of them were larger in female rats of estrus than in male rats, whereas there was no difference between sexes in the levels of pyruvate and lactate. According to time passage from CO intoxication, the mode of changes in cerebral energy metabolite contents was similar in both sexes.

  • PDF