• 제목/요약/키워드: Pyrrolidine

검색결과 108건 처리시간 0.027초

폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질 (Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer)

  • 라즈쿠마 파텔;박정태;박민수;김종학
    • 멤브레인
    • /
    • 제27권6호
    • /
    • pp.499-505
    • /
    • 2017
  • 인위적인 온실 가스 배출로 인한 자연 재해가 증가하고 있으며 이로 인해 기체 분리막의 개발이 촉진되게 되었다. 이산화탄소($CO_2$)는 지구 온난화의 주요 원인이다. 고유의 유연성을 가지는 유기 고분자 막은 기체 분리막의 좋은 후보군 중 하나이며, 이 중 이산화탄소에 대한 높은 확산도를 가지고 있는 폴리디메틸실록산(PDMS)은 유망한 소재이다. 또한, 폴리비닐피롤리돈(PVP)은 이산화탄소에 대한 높은 용해도를 가지고 있는 고분자로 기체 분리막에 활용될 수 있다. 따라서 본 연구에서는 용이한 조건에서 간단한 단일 반응 자유 라디칼 중합에 의하여 다양한 조성의 폴리디메틸실록산-폴리비닐피롤리돈(PDMS-PVP) 빗살 공중합체를 합성하였다. PDMS와 PVP로 합성된 공중합체는 FTIR을 통해 분석하였다. 고분자의 형태학 및 열적 특성은 TEM, TGA 및 DSC를 통하여 분석하였다. PDMS-PVP 빗살 공중합체를 다공성 폴리설폰 지지체 위에 코팅하여 복합막을 제조했으며, 제조한 복합막의 기체 투과 특성을 분석하였다. 그 결과 이산화탄소의 투과도 및 이산화탄소/질소 선택도가 각각 140.6 GPU 및 12.0에 도달하였다.

핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진 (Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells)

  • 최원경;최영현
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1268-1276
    • /
    • 2018
  • Cytidine analog decitabine (DEC)은 핵산 합성의 억제제로서 골수이형성 증후군 및 급성 골수성 백혈병 치료제로 사용되고 있다. 산화질소 합성에서 번역 단계를 억제하는 것으로 알려진 ammonium pyrrolidine dithiocarbamate (PDTC)는 $NF-{\kappa}B$의 대표적인 억제제이다. 본 연구에서는 인체 위암 AGS 세포를 대상으로 DEC와 PDTC의 병용 처리에 따른 세포증식 억제 기전을 조사하였다. 본 연구의 결과에 따르면 PDTC에 의한 AGS 세포의 증식 억제 효과는 DEC에 의해 농도 의존적으로 유의하게 증가하였으며, 이는 G2/M기의 세포주기 정지 및 apoptosis 유도와 관련이 있었다. PDTC와 DEC의 병용 처리에 의한 세포 사멸의 유도는 DNA 손상 유도와 관련이 있음을 H2AX의 인산화 증가로 확인하였다. 아울러 PDTC와 DEC의 병용 처리는 미토콘드리아 막 전위의 파괴를 유도하고, 세포 내 활성산소종(ROS)의 생성과 Bax의 발현을 향상시키고, Bcl-2 발현을 감소시켰으며 미토콘드리아에서 세포질로의 cytochrome c 유출을 증가시켰다. 또한 PDTC과 DEC의 병용 처리는 외인성 및 내인성 apoptosis 개시 caspase에 해당하는 caspase-8과 caspase-9의 활성뿐만 아니라 caspase-3의 활성화와 PARP 단백질의 분해를 유도하였다. 결론적으로 본 연구의 결과는 PDTC와 DEC의 병용 처리가 DNA 손상을 유발하고, ROS 증가와 연계된 외인성 및 내인성 apoptosis 사멸 경로를 활성화시킴으로써 AGS 세포의 증식을 억제하였음을 의미한다.

Ultra-trace Arsenic Determination in Urine and Whole Blood Samples by Flow Injection-Hydride Generation Atomic Absorption Spectrometry after Preconcentration and Speciation Based on Dispersive Liquid-Liquid Microextraction

  • Shirkhanloo, Hamid;Rouhollahi, Ahmad;Mousavi, Hassan Zavvar
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3923-3927
    • /
    • 2011
  • A noble method for pre-concentration and speciation of ultra trace As (III) and As (V) in urine and whole blood samples based on dispersive liquid-liquid microextraction (DLLME) has been developed. In this method, As (III) was complexed with ammonium pyrrolidine dithiocarbamate at pH = 4 and Then, As (III) was extracted into the ionic liquid (IL). Finally, As (III) was back-extracted from the IL with hydrochloric acid (HCl) and its concentration was determined by flow injection coupled with hydride generation atomic absorption spectrometry (FI-HGAAS). Total amount of arsenic was determined by reducing As (V) to As (III) with potassium iodide (KI) and ascorbic acid in HCl solution and then, As (V) was calculated by the subtracting the total arsenic and As (III) content. Under the optimum conditions, for 5-15 mL of blood and urine samples, the detection limit ($3{\sigma}$) and linear range were achieved 5 ng $L^{-1}$ and 0.02-10 ${\mu}g\;L^{-1}$, respectively. The method was applied successfully to the speciation and determination of As (III) and As (V) in biological samples of multiple sclerosis patients with suitable precision results (RSD < 5%). Validation of the methodology was performed by the standard reference material (CRM).

p38 MAPK and $NF-_{\kappa}B$ are Required for LPS-Induced RANTES Production in Immortalized Murine Microglia (BV-2)

  • Jang, Sae-Byeol;Lee, Kweon-Haeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.339-346
    • /
    • 2000
  • Using murine immortalized microglial cells (BV-2), we examined the regulation of RANTES production stimulated by lipopolysaccharide (LPS), focusing on the role of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B.$ The result showed that RANTES (regulated upon activation of normal T cell expressed and secreted) was induced at the mRNA and protein levels in a dose- and time-dependent manner in response to LPS. From investigations of second messenger pathways involved in regulating the secretion of RANTES, we found that LPS induced phosphorylation of extracellular signal-regulated kinase (Erk), p38 MAPK and c-Jun-N-terminal kinase (JNK), and activated $(NF)-{\kappa}B.$ To determine whether this MAPK phosphorylation is involved in LPS-stimulated RANTES production, we used specific inhibitors for p38 MAPK and Erk, SB 203580 and PD 98059, respectively. LPS-induced RANTES production was reduced approximately 80% at $25\;{\mu}M$ of SB 203580 treatment. But PD 98059 did not affect RANTES production. Pyrrolidine-dithiocarbamate (PDTC), $(NF)-{\kappa}B$ inhibitor, reduced RANTES secretion. These results suggest that LPS-induced RANTES production in microglial cells (BV-2) is mainly mediated by the coordination of p38 MAPK and $(NF)-{\kappa}B$ cascade.

  • PDF

7-[(3-메틸티오 또는 3-메틸티오메틸)피롤리디닐]퀴놀론-3-카르복실산의 합성과 항균작용 (Synthesis and Antimicrobial Activity of 7-[(3-Methylthio or 3-Methylthiomethyl)pyrrolidinyl] quinolone-3-carboxylic Acid)

  • 이재욱;강태충;이규삼;손호정;윤길중;유영효;김대영
    • 약학회지
    • /
    • 제38권2호
    • /
    • pp.197-201
    • /
    • 1994
  • A number of 7-[(3-methylthio or methylthiomethyl)pyrrolidiny]qui nolone-3-carboxylic acids were synthesized by condensation of 7-fluoro substituted quinolone-3-carboxylic acid with 3-methylthiopyrrolidine or 3-methylthiomet hylpyrrolidne. 3-Methylthiopyrrolidine or 3-methylthio-methylpyrrolidine which was prepared from N-benzyl-3-hydroxy pyrrolidine or 3-hydroxymethylpyrrolidine. The in vitro antimicrobial activity of them were tested against twenty species of Gram-positive or Gram-negative microorganisms. It showed remarkable antibacterial activity, particularly against Gram-positive microorganisms. Among those 1-cyclopropyl-6,8-difluoro-7-(3-methylthiomethy-lpyrrolidinyl)-1,4-d ihydro-4-oxo-3-quinolinecarboxylic acid(7d) and 1-cyclopropyl-6- fluoro-8-chloro-7-(3-methylthiomethyl pyrrolidinyl)-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid (7f) showed the most potent in vitro antibacterial activity.

  • PDF

LIGHT is Expressed in Foam Cells and Involved in Destabilization of Atherosclerotic Plaques through Induction of Matrix Metalloproteinase-9 and IL-8

  • Kim, Won-Jung;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.116-122
    • /
    • 2004
  • Background: LIGHT (TNFSF14) is a member of tumor necrosis factor superfamily and is the ligand for TR2 (TNFRSF14/HVEM). LIGHT is known to have proinflammatory roles in atherosclerosis. Methods: To find out the expression pattern of LIGHT in atherosclerotic plaques, immunohistochemical analysis was performed on human carotid atherosclerotic plaque specimens. LIGHT induced atherogenic events using human monocytic cell line THP-1 were also investigated. Results: Immunohistochemical analysis revealed expression of LIGHT and TR2 in foam cell rich regions in the atherosclerotic plaques. Double immunohistochemical analysis further confirmed the expression of LIGHT in foam cells. Stimulation of THP-1 cells, which express TR2, with either recombinant LIGHT or immobilized anti-TR2 monoclonal antibody induced interleukin-8 and matrix metalloproteinase(MMP)-9. Electrophoretic mobility shift assay demonstrated that LIGHT induces nuclear localization of transcription factor, nuclear factor $(NF)-{\kappa}B$. LIGHT induced activation of MMP-9 is mediated by $NF-{\kappa}B$, since treatment of THP-1 cells with the $NF-{\kappa}B$ inhibitor PDTC (pyrrolidine dithiocarbamate) completely blocked the activation of MMP-9. Conclusion: These data indicate that LIGHT is expressed in foam cells in atherosclerotic plaques and is involved in atherogenesis through activation of pro-atherogenic cytokine IL-8 and destabilization of plaque by inducing matrix degrading enzyme.

Intramolecular Hydroaminations of Aminoalkynes Catalyzed by Yttrium Complexes and Aminoallenes Catalyzed by Zirconium Complexes

  • Kim, Hyun-Seok;Livinghouse, T.;SeoMoon, Dong;Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1127-1134
    • /
    • 2007
  • It was demonstrated that Y[N(TMS)2]3, the neutral yttrium-diamine complex 13 and yttrium-NPS complexes 15 are efficient precatalysts for intramolecular hydroamination of aminoalkynes involving primary amines. Complex 13 and 15 were quantitatively prepared in situ by direct metalation of the ligands 4 and 9 with 1 equiv of Y[N(TMS)2]3 in benzene-d6 at 120 oC for 5 days and 10 days, respectively, via elimination of (TMS)2NH. 5-Exo- and 6-exo-dig intramolecular hydroamination of aminoalkynes using catalyst 12 and 13 proceeded smoothly to give nitrogen-contained cyclic products in good to excellent yields in all cases. In the case of 7- exo-dig intramolecular hydroamination, the desired product was produced in 41% and 48% yields despite the gem-dimethyl effect. However, treatment of catalyst 15 with aminoalkynes (19 and 22) having a methyl substituent at the carbon adjacent to triple bond and 6-exo-dig intramolecular hydroamination of 21 failed to give the desired products. Zirconium-catalyzed intramolecular hydroamination of aminoallenes (25, 27, and 31) with 5 mol% 16 afforded 2-(trans-1-propenyl)pyrrolidine, 2-isopropylenepyrrolidine, and 2-(trans-1- propenyl)piperidine in 96%, 95%, and 93% yield, respectively. However, subjecting 25 to 5 mol% 15 was unsuccessful to produce the desired product.

Cholera Toxin Disrupts Oral Tolerance via NF-κB-mediated Downregulation of Indoleamine 2,3-dioxygenase Expression

  • Kim, Kyoung-Jin;Im, Suhn-Young
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.175-184
    • /
    • 2017
  • Cholera toxin (CT) is an ADP-ribosylating bacterial exotoxin that has been used as an adjuvant in animal studies of oral immunization. The mechanisms of mucosal immunogenicity and adjuvanticity of CT remain to be established. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), which participates in the induction of immune tolerance, in CT-mediated breakdown of oral tolerance. When IDO-deficient ($IDO^{-/-}$) mice and their littermates were given oral ovalbumin, significant changes in antibody responses, footpad swelling and $CD4^+$ T cell proliferation were not observed in $IDO^{-/-}$ mice. Feeding of CT decreased IDO expression in mesenteric lymph nodes (MLN) and Peyer's patch (PP). CT-induced downregulation of IDO expression was reversed by inhibitors of nuclear factor-kappa B (NF-${\kappa}B$), pyrrolidine dithiocarbamate and p50 small interfering RNA. IDO expression was downregulated by the NF-${\kappa}B$ inducers lipopolysaccharide and tumor necrosis factor-${\alpha}$. CT dampened IDO activity and mRNA expression in dendritic cells from MLN and PP. These data indicate that CT disrupts oral tolerance by activating NF-${\kappa}B$, which in turn downregulates IDO expression. This study betters the understanding of the molecular mechanism underlying CT-mediated abrogation of oral tolerance.

Hologram Based QSAR Analysis of Caspase-3 Inhibitors

  • Sathya., B
    • 통합자연과학논문집
    • /
    • 제11권2호
    • /
    • pp.93-100
    • /
    • 2018
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage because the activation of caspases-3 stimulates a signalling pathway that ultimately leads to the death of the cell. In this study, Hologram based Quantitative Structure Activity Relationship (HQSAR) models was generated on a series of Caspase-3 inhibitors named 3, 4-dihydropyrimidoindolones derivatives. The best HQSAR model was obtained using atoms, bonds, and hydrogen atoms (A/B/H) as fragment distinction parameter using hologram length 61 and 3 components with fragment size of minimum 5 and maximum 8. Significant cross-validated correlation coefficient ($q^2=0.684$) and non cross-validated correlation coefficients ($r^2=0.754$) were obtained. The model was then used to evaluate the eight external test compounds and its $r^2_{pred}$ was found to be 0.559. Contribution map show that presence of pyrrolidine sulfonamide ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds.

Mechanism of P-glycoprotein Expression in the SGC7901 Human Gastric Adenocarcinoma Cell Line Induced by Cyclooxygenase-2

  • Gu, Kang-Sheng;Chen, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2379-2383
    • /
    • 2012
  • Objective: To investigate possible signal pathway involvement in multi-drug resistant P-glycoprotein (P-gp) expression induced by cyclooxygenase-2 (COX-2) in a human gastric adenocarcinoma cell line stimulated with pacliaxel (TAX). Methods: The effects of TAX on SGC7901 cell growth with different doses was assessed by MTT assay, along with the effects of the COX-2 selective inhibitor NS-398 and the nuclear factor-KB (NF-KB) pathway inhibitor pyrrolidine dithiocarbamate (PDTC). Influence on COX-2, NF-KB p65 and P-gp expression was determined by Western blotting. Results: TAX, NS-398 and PDTC all reduced SGC7901 growth, with dosedependence. With increasing dose of TAX, the expression of COX-2, p65 and P-gp showed rising trends, this being reversed by NS-398. PDTC also caused decrease in expression of p65 and P-gp over time. Conclusion: COX-2 may induce the expression of P-gp in SGC7901 cell line via the NF-kappa B pathway with pacliaxel stimulation.