Browse > Article
http://dx.doi.org/10.13160/ricns.2018.11.2.93

Hologram Based QSAR Analysis of Caspase-3 Inhibitors  

Sathya., B (Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology)
Publication Information
Journal of Integrative Natural Science / v.11, no.2, 2018 , pp. 93-100 More about this Journal
Abstract
Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage because the activation of caspases-3 stimulates a signalling pathway that ultimately leads to the death of the cell. In this study, Hologram based Quantitative Structure Activity Relationship (HQSAR) models was generated on a series of Caspase-3 inhibitors named 3, 4-dihydropyrimidoindolones derivatives. The best HQSAR model was obtained using atoms, bonds, and hydrogen atoms (A/B/H) as fragment distinction parameter using hologram length 61 and 3 components with fragment size of minimum 5 and maximum 8. Significant cross-validated correlation coefficient ($q^2=0.684$) and non cross-validated correlation coefficients ($r^2=0.754$) were obtained. The model was then used to evaluate the eight external test compounds and its $r^2_{pred}$ was found to be 0.559. Contribution map show that presence of pyrrolidine sulfonamide ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds.
Keywords
Caspase; HQSAR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Sathay, "Docking study of corticotropin-releas-ing factor-1 receptor with its antagonists", J. Chosun Natural Sci., Vol. 11, pp. 19-24, 2018.
2 Tripos Sybyl, HQSAR manual.
3 C. L. Waller, "A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structur- ally diverse compounds", J. Chem. Inf. Comput. Sci., Vol. 44, pp. 758-765, 2004.   DOI
4 W. Tong, D. R. Lowis, R. Perkins, Y. Chen, W. J. Welsh, D. W. Goddette, T. W. Heritage, and D. M. Sheehan, "Evaluation of quantitative structure-activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor", J. Chem. Inf. Comput. Sci., Vol. 38, pp. 669-677, 1998.   DOI
5 M. Thirumurthy, K. Gugan, C. G. Gadhe, and J. C. Segung, "QSAR analysis on PfPK7 inhibitors using HQSAR, CoMFA and CoMSIA", Med. Chem. Res., Vol. 21, pp. 681-693, 2012.   DOI
6 T. W Heritage and D. R. Lowis, "Molecular Holo-gram QSAR", In Rational Drug Design, Washing-ton: American Chemical Society, ACS Symposium Series, Vol. 719, pp 212-225, 2000.
7 B. Sathya, "Homology modelling of chemerin like receptor-1 (CMKLR1): potential target for treating type II diabetes", J. Chosun Natural Sci., Vol. 10, pp. 20-26, 2017.   DOI
8 D. A Winkler and F. R. Burden, "Holographic QSAR of benzodiazepines", Quantitative Structure-Activity Relationships, Vol. 17, pp. 224-231, 1998.   DOI
9 S. Wold, "Cross-validatory estimation of the num- ber of components in factor and principal component model", Technometrics, Vol. 20, pp. 397-405, 1978.   DOI
10 B. Sathya, "Hologram based QSAR analysis of xan-thine oxidase inhibitors", J. Chosun Natural Sci., Vol. 10, pp. 202-208, 2017.
11 D. W. Nicolson, "Caspase structure, proteolytic substrates, and function during apoptotic cell death", Cell Death Differ., Vol. 6, pp. 1028-1042, 1999.   DOI
12 M. D. Jacobson, M. Weil, and M. C Raff, "Pro-grammed cell death in animal development", Cell, Vol. 88, pp. 347-354, 1997.   DOI
13 G. M. Cohen, "Caspases: the executioners of apoptosis", Biochem. J., Vol. 326, pp. 1-16, 1997.   DOI
14 C. B. Thonberry and Y. Lazebnik, "Caspases: enemied within", Science, Vol. 281, pp. 1312-1316, 1998.   DOI
15 J. Wang, M. J. Lenardo, "Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene deficiencies", J. Cell Sci., Vol. 113, pp. 753-757, 2000.
16 M. Endres, S. Namura, M. Shomizu-Sasamata. C. Waeber, L. Zhang, T. Gomez-Isla, B. T. Hyman, and M. A. Moskowitz, "Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of caspase family", J. Cereb. Blood Flow Metab., Vol. 18, pp. 238-247, 1998.   DOI
17 R. S. Hotchkiss, K. C. Chang , P. E. Swanson, K. W. Tinsley, J. J. Hui, P. Klender, S. Xanthoudakis, S. Roy, C. Black, E. Grimm, R. Aspiotis, Y. Han, D. W. Nicholson, and I. E. Karl, "Caspase inhibitors improves survival in sepsis: a critical role of the lymphocyte", Nat. Immunol., Vol. 1, pp. 496-501, 2000.   DOI
18 K. M. Boatright and G. S. Salvesen, "Mechanisms of caspase activation", Curr. Opin. Cell Biol., Vol. 15, pp. 725-731, 2003.   DOI
19 B. A. Callus and D. L. Vaux, "Caspase inhibitors: viral, cellular and chemical", Cell Death Differ., Vol. 14, pp. 73-78, 2007.   DOI
20 B. H. Han, D. Xu, J. Cho, Y. Han, S. Xanthoudakis, S. Roy, J. Tam, J. Vaillancourt, J. Colucci, R. Siman, A. Giroux, G. S. Robertson, R. Zamboni, D. W. Nicholson, and D. M. Holtzman, "Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury", J. Biol. Chem., Vol. 277, pp. 30128-30136, 2002.   DOI
21 D. Lee, S. A. Long, J. H. Murray, J. L. Adams, M. E. Nuttall, D. P. Nadeau, K. Kikly, J. D. Winkler, C.-M. Sung, M. D. Ryan, M. A. Levy, P. M. Keller, and W. E. DeWolf, "Potent and selective non pep- tide inhibitors of caspase 3 and 7", J. Med. Chem., Vol. 44, pp. 2015-2026, 2001.   DOI
22 H. Yaoita, K. Ogawa, K. Maehara, and Y. Maruyama, "Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor", Circulation, Vol. 97, pp. 276-281, 1998.   DOI
23 J. Schoenberger, J. Bauer, J. Moosbauer, C. Eilles, and D. Grimm, "Innovative strategies in in-vivo apoptosis imaging", Curr. Med. Chem., Vol. 15, pp. 187-194, 2008.   DOI
24 L. M. Havran, D. C. Chong, W. E. Childers, P. J. Dollings, A. Dietrich, B. L. Harrison, V. Marathias, G. Tawa, A. Aulabaugh, R. Cowling, B. Kapoor, W. Xu, L. Mosyak, F. Moy, W.-T. Hum, A. Wood, and A. J. Robichaud, "3.4-Dihydropyrimido (1,2-a indol-10(2H)-ones as potent non-peptidic inhibitors of caspase-3", Bioorg. Med. Chem., Vol. 17, pp. 7755-7768, 2009.   DOI
25 D. K. Perry, M. J. Smyth, H. R. Stennicke, G. S. Salvessan, P. Duriez, G. G. Poirier, and Y. A. Han- nun, "Zinc is a potent inhibitor of the apoptotic protease, caspase-3. a novel target for zinc in the inhibition of apoptosis", J. Biol. Chem., Vol. 272, pp. 18530-18533, 1997.   DOI
26 A. G. Porter and R. U. Janicke, "Emerging roles of caspase 3 in apoptosis", Cell Death Differ., Vol. 6, pp. 99-104, 1999.   DOI
27 C. W. Scott, C. Sobotka-Brinker, D. E. Wilkins, R. T. Jacobs, J. J. Folmer, W. J. Frazee, R. V. Bhat, S. V. Ghanekar, and D. Aharony, "Novel small molecule inhibitors of caspase-3 block cellular and bio-chemical features of apoptosis", J. Pharmacol. Exp. Ther., Vol. 304, pp. 433-440, 2003.   DOI
28 D. V. Kravchenko, V. M. Kysil, S. E. Tkachenko, S. Maliarchouk, I. M. Okun, and A. V. Ivanchtch- enko, "Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-sub- stituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo [3,4-c]quinoline-1,3-diones", Eur. J. Med. Chem., Vol. 40, pp. 1377-1383, 2005.   DOI
29 W. Chu, J. Zhang, C. Zeng, J. Rothfuss, Z. Tu, Y. Chu, D. E. Reichert, M. J. Welch, and R. H. Mach, "N-Benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: Synthesis, in vitro activity and molecular modeling studies", J. Med. Chem., Vol. 48, pp. 7637-7647, 2005.   DOI