• Title/Summary/Keyword: Pyrophyllite

Search Result 116, Processing Time 0.026 seconds

Mineralogical Study on Shales of the Sadong and Gobangsan Formation, Munkyung Area (문경지역 사동층, 고방산층 셰일에 대한 광물학적 연구)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo;Kim, Young-Mi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The metamorphic environments occrrred in the Sadong and the Gobangsan formations were studied through the investigation of chloritoid and white mica in shales at Munkyung area. Two types of white mica occurs in the shale of Sadong formation; muscovite-dominant ($Mu_{76.1}Pa_{18.1}Ma_{5.8}$) and margarite-dominant ($Ma_{52.9}Mu_{31.6}Pa_{15.5}$). It is inferred that the muscovite-dominant white mica is generated by the diagenesis of Na-rich illite whereas the margarite-dominant white mica is generated by reactions between calcite and pyrophyllite separated from illite. In shales of the Gobangsan formation, chloritoids are observed with muscovite, pyrophyllite and chlorite. The chloritoids of the Gobangsan formation are considered to be originated from the reaction between pyrophyllite and chlorite. The Sadong and Gobangsan formations would have experienced the low-temperature metamorphism (anchizone) considering that white mica in general forms above the temperature of $200^{\circ}C$ and the assemblage of chloritoid-pyrophyllite-chlorite is stabilized below $280^{\circ}C$.

Illite, Reviewed on the Chemical Compositions - The Mixed Phase among Muscovite, Pyrophyllite and Chlorite: EPMA Quantitative Analysis of Shale from the Jigunsan Formation at Seokgaejae in Samchuk-City, Gangwon-do (화학조성으로 다시 보는 일라이트-백운모, 파이로필라이트 및 녹니석의 혼합상: 강원도 삼척시 석개재에 분포하는 직운산층 셰일에 대한 EPMA 정량분석)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.143-153
    • /
    • 2012
  • Mica-type minerals (illites) in the shales of the Jigunsan formation at Seokgaejae in Samchuk-City, Gangwon-do are studied using electron probe micro analysis (EPMA). The average chemical formula of the mica-type mineral obtained from the quantitative analysis is $(K_{1.17}Na_{0.04}Ca_{0.01})(Al_{2.80}Mg_{1.17}Fe_{0.78})(Si_{6.34}Al_{1.66})O_{20}(OH)_4$, which shows a chemical formula within the range of illite. These illites so called can be considered as mixed-phases among muscovite, pyrophyllite and chlorite due to the low contents of interlayer cations and high Mg, Fe. The formula of illite is separated into those three minerals and the method for the separation is newly formulated and proposed in this study. From the formula of illite, the content of muscovite is estimated from K (Na and Ca included), the content of chlorite by Mg+Fe, and the rest remains as pyrophyllite. The chemical formula of muscovite can be calculated by subtracting the compositions of pyrophyllite and chlorite from the analyzed composition of illite using an ideal formula for pyrophyllite and analyzed average formula for chlorite. The calculated formula of muscovite is supposed to be stoichiometric in principle. The result of the separation of analyzed illite is 61% muscovite, 27.3% chlorite and 11.7% pyrophyllite and the calculated formula of muscovite after separation is $(K,Na,Ca)_{2.00}Al_{3.69}(Si_{6.75}Al_{1.25})O_{20}(OH)_4$. The calculated formula of muscovite slightly low in Al content can be considered to be reasonable in general when the low content of Al in the rock and the uncertainties of chlorite compositions used in the calculation are counted. This supports that the method of separation proposed in this study is also applicable.

Effect of Packing Characteristics on the sintering Propertiesof Pyrophyllite (랍석분쇄물의 충전성이 그 소결성에 미치는 영향)

  • 지응업;최상욱;류태원
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.236-241
    • /
    • 1977
  • Three kinds of specimen, consisting of the graded pyrophyllite particles alone, a substituent of 8 percent fire clay for the finer portion ($F_2$) of it, and 0.8 percent inorganic binder-added composite were prepared under the following conditions respectively; moisture content=4.5~5.0%, forming pressure=250kg/$\textrm{cm}^2$ and sintering temperature=1, 000~1, 30$0^{\circ}C$. The various properties such as modulus of rupture, apparent porosity, bulk specific gravity, pore size and pore distributiion were measured in order to collaborate with sintering phenomena. The results obtained are as follows: (1) Apparent porosity isgradually decreased with rising the sintering temperature to 1, 25$0^{\circ}C$. (2) The binder-added specimen showed the lowest value in porosity. (3) The optimum sintering temperature of specimens was considered to be 1, 25$0^{\circ}C$. (4) The wider differences between pore volumes of specimens could be obtained by method of mercurypenetration porosimeter than by the conventional method for porosity.

  • PDF

Synthesis of $\beta$-Sialon from Wando Pyrophyllite (2) (완도 납석으로부터 $\beta$-Sialon의 합성 (2))

  • 이홍림;장병국;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.35-42
    • /
    • 1985
  • $eta$-Sialon powders were prepared by reduction-nitridation from mixture of Wando pyrophyllite and graphite as a reducing agent at 135$0^{\circ}C$ in 80% $N_2$-20% $H_2$ atmosphere. As the reaction products $Si_2ON_2$, $\beta$-$Si_3N_4$ a--$Si_3N_4$ and $\beta$-SiC were observed. Additive agents of MgO, CaO, $Y_2O_3$ were used for promoting the reduction and nitridiation aeaction. The present study was conducted to investigate the effects of silica-carbon ratio ($SiO_2$/C=weight ratio), raction time gas flow rate pellet size and powder packing on synthesis of $\beta$-Sialon from Wando pyropyllite.

  • PDF

Mineralogical Study on High Aluminous meta-Claystone form the Chununsan Formation (천운산층내 고알루미나광석에 대한 광물학적 연구)

  • 이동진;이성록
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1988
  • The high aluminous meta-claystones are thinly bedded to metasedimentary rocks which belong to Chununsan Formation. Major high aluminous minerals in the ores ae andalusite, kaolinite and pyrophyllite. The other significant constituents are sericite, chloritoid and carbonaceous material, etc. Ores can be classified into 4 types according to mineral compositions; andalusite- kolinite-sericite, andalusite-kaolinite-chloritoid, kaolinite-sericite-pyrophyllite, and kaolinite-chloritoid-sericite ore. The formation of ore minerals are resulted from sedimentary, diagenetic, metamorphic and hydrothermal processes. Andalusite are formed by low-grade metamorphism under the conditions of $400~500^{\circ}C$ and below 4kb, from the view-point of mineral stability field, illite-mica crystallinity and graphitization degree of the carbonaceous material. Andalusites are partly altered to kaolinite, forming major mineral phase in the ores.

  • PDF

Mechanical Properties of $\beta$-Sialon Prepared from Wando Pyrophyllite (완도납석으로부터 제조된$\beta$-Sialon의 기계적 성질)

  • 이홍림;장병국
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.17-22
    • /
    • 1986
  • $\beta$-Sialon powders were prepared by the reduction-nitridation reaction from the mixture of Wando-pyrophyllite and graphite at 135$0^{\circ}C$ in $N_2-H_2$ atmosphere. The $\beta$-Sialon powders were sintered at 175$0^{\circ}C$ by the pressureless sintering for 90min and the hot-pressing for 60 min respectively. All the sintered bodies showed their relative densities higher than 94% The values of M.O.R fracture toughness(KIC) and hardness showed 32.9kpsi 2.9MN/$m^{1.5}$ , 12.1GN/$m^2$ for the pressure-less sitnered bodies and 48.6kpsi, 4.6 MN/4m^{1.5}$ 15.3GN/$m^2$ for the hot-pressed bodies respectively.

  • PDF

Major Industrial Minerals in Korea : Geological Occurrence and Current Status of Demand/Supply (국내 산업소재광물의 수급 및 부존 특성)

  • Lee, Dong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • The industrial minerals play an important role in mining sector. More than 70 % of total mineral production come from industrial mineral sector. This paper reviews geological occurrence of kaolin, pyrophyllite and limestone, and current demand-supply status of major industrial minerals in the Republic of Korea. The kaolin is mainly distributed in the Kyeongsang province, formed by deep weathering of Precambrian anorthosite on mountainside of gentle slope. The pyrophyllite mainly occurs in the Kyeongsang and Chulla provinces, formed by hydrothermal alteration of late Cretaceous andesitic and rhyolitic rocks. Pyrophyllite comprises massive and lenticular bodies and contains minor amounts of kaolin, alunite and pyrite, in some places andalusite and illite. The limestone(Great Limestone Series of Cambrian age) is distributed widely in the Kwangwon and Chungcheong provinces. The limestone bodies are approzimately 70 km long and 3 km wide, elongated NE-ward, and show high grade of CaO content. In 1992, the self-sufficiency ratio of 44 nonfuel (metallic and non-metallic) minerals was no more than 30 percent. However, the ratio of 27 industrial minerals (non-metallic) represents high value of about 72 percent. The export/productjon ratio of the industrial minerals shows decreasing patterns from 12.2 % in 1983 to 4.2 % in 1992. Also the import/production ratio shows rapidly decreasing pattern from 84 % in 1983 to 38.2 % in 1992.

  • PDF