• Title/Summary/Keyword: Pyrolytic SiC

Search Result 23, Processing Time 0.029 seconds

Fabrication and Characterization of Macro/Mesoporous SiC Ceramics from SiO2 Templates (실리카 주형을 이용한 메크로/메조다공성 탄화규소 세라믹의 제조와 비교특성)

  • ;Hao Wang
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.528-533
    • /
    • 2004
  • Macroporous SiC with pore size 84∼658 nm and mesoporous SiC with pore size 15∼65 nm were respectively prepared by infiltrating low viscosity preceramic polymer solutions into the various sacrificial templates obtained by natural sedimentation or centrifuge of 20∼700 nm silica sol, which were subsequently etched off with HF after pyrolysis at 1000∼140$0^{\circ}C$ in an argon atmosphere. Three-dimensionally long range ordered macroporous SiC ceramics derived from polymethylsilane (PMS) showed surface area 584.64$m^2$g$^{-1}$ when prepared with 112nm silica sol and at 140$0^{\circ}C$, whereas mesoporous SiC from polycarbosilane (PCS) exhibited the highest surface area 619.4 $m^2$g$^{-1}$ with random pore array when prepared with 20-30 nm silica sol and at 100$0^{\circ}C$. Finally, tile pore characteristics of porous SiC on the types of silica sol, polymers and pyrolytic conditions were interpreted with the analytical results of SEM, TEM, and BET instruments.

Formation of a Carbon Interphase Layer on SiC Fibers Using Electrophoretic Deposition and Infiltration Methods

  • Fitriani, Pipit;Sharma, Amit Siddharth;Lee, Sungho;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • This study examined carbon layer coating on silicon carbide (SiC) fibers by utilizing solid-state and wet chemistry routes to confer toughness to the fiber-reinforced ceramic matrix composites, as an alternative to the conventional pyrolytic carbon (PyC) interphase layer. Electrophoretic deposition (EPD) of carbon black nanoparticles using both AC and DC current sources, and the vacuum infiltration of phenolic resin followed by pyrolysis were tested. Because of the use of a liquid phase, the vacuum infiltration resulted in more uniform and denser carbon coating than the EPD routes with solid carbon black particles. Thereafter, vacuum infiltration with controlled variation in phenolic resin concentration, as well as the iterations of infiltration steps, was improvised to produce a homogeneous carbon coating having a thickness of several hundred nanometers on the SiC fiber. Conclusively, it was demonstrated that the carbon coating on the SiC fiber could be achieved using a simpler method than the conventional chemical vapor deposition technique.

Research on Fabrication of Graphene Sheet (그라핀 기판 제작 연구)

  • Oh, Se-Man;Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.384-384
    • /
    • 2008
  • 그라핀 기판 제작을 위해서는 그라파이트의 탈착이 가장 핵심 기술이다. 본 연구에서는 신뢰성 있는 그라핀 기판 제작을 위해서, HOPG(Highly Ordered Pyrolytic Graphite) 기판에 고농도의 이온을 주입하고, HOPG를 이형기판에 본딩한후, 후속 열처리를 통해 HOPG를 탈착시켜 그리핀을 얻는 일련의 기본 실험에 대한 결과를 보여 주고자 한다. 기대하는 효과는 고농도의 수소/산소 이온의 경우 주입된 고농도의 수소/산소가 후속 열처리동안 이동 및 뭉침현상을 통해 HOPG기판 내에 수소압력(혹은 CO2 발생)을 증가시켜 HOPG를 자르는 것을 기대하고 있다. 일차 수소이온 주입의 실험결과, 기대와는 달리 $900^{\circ}C$ 열처리에도 절단현상이 발견되지 않아서 산소이온주입에 대한 추가실험을 진행 중이다. 그라핀 본딩의 경우 그라핀의 큰 roughness로 인해 $SiO_2$만의 Fusion 본딩은 불가능함을 여러 실험을 통해 알 수 있었고, 현재 SiO2/SOG 혹은 SiO2/Fox를 이용한 본딩실험을 진행중이다.

  • PDF

Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels (피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향)

  • Kim, Yeon-Ku;Kim, Weon-Ju;Yeo, SungHwan;Cho, Moon Sung
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.384-390
    • /
    • 2016
  • Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

A Study on the Synthesis ann Pyrolytic Properties of SiC/Ti Hybrid Ceramic Precursor by Hydrolysis (가수분해에 의한 탄화규소/티타늄 혼성 세라믹 전구체 합성과 열분해 특성에 관한 연구)

  • 황택성;이존태;우희권
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.299-305
    • /
    • 2000
  • In order to increase the thermal stability at high temperatures, new hybrid ceramic percursors were synthesized by chemical modification of polycarbosilane (PCS). The structure of hybrid ceramic percursors were investigated by using FT-IR and $^1$H-NMR spectrometers. The syntheses of hybrid ceramic precursors were confirmed by monitoring the change of the adsorption peaks appearing at 0893, 1092, 609 $cm^{-1}$ / on the FT-IR spectra, and also by the presence of peaks at 3.8, 2.0, 0.6 ppm on the $^1$H-NMR spectra. The conversion of hybrid ceramic percursor was around 74 and 10 wt% higher than that of the pure PCS. After the heat-treatment at 150$0^{\circ}C$, the crystalline peaks for $\beta$-SiC were observed at 2$\theta$=35.7, 42.2, 61.0$^{\circ}$ on the X-ray powder diffractogram. It showed the conversion of hybrid ceramic percursor to crystalline $\beta$-SiC.

  • PDF

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.

Nondestructive Measurement of the Coating Thickness in the Simulated TRISO-Coated Fuel Particle Using Micro-Focus X-ray Radiography (마이크로포커스 X-선 투과 영상을 이용한 모의 TRISO 핵연료 입자 코팅 층 두께 비파괴 측정)

  • Kim, Woong-Ki;Lee, Young-Woo;Park, Ji-Yeon;Park, Jung-Byung;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • TRISO(tri-isotropic)-coated fuel particle technology is utilized owing to its higher stability at a high temperature and Its efficient retention capability for fission products In the HTGR(high temperature gas-reeled reactor). The typical spherical TRISO fuel panicle with a diameter of about 1mm is composed of a nuclear fuel kernel and outer coating layers. The outer coating layers consist of a buffer PyC(pyrolytic carbon) layer, Inner PyC(1-PyC) layer, SiC layer, and outer PyC(O-PyC) layer Most of the Inspection Items for the TRTSO-coated fuel particle depend on destructive methods. The coating thickness of the TRISO fuel particle can be nondestructively measured by the X-ray radiography without generating radioactive wastel. In this study, the coaling thickness for the simulated TRISO-coated fuel particle with $ZrO_2$ kernel Instead of $%UO_2$ kernel was measured by using micro-focus X-ray radiography with micro-focus X-ray generator and flat panel detector The radiographic image was also enhanced by image processing technique to acquire clear boundary lines between coating layers. The coaling thickness wat effectively measured by applying the micro-focus X-ray radiography The inspection process for the TRISO-coated fuel particles will be improved by the developed micro-focus X-ray radiography and digital image processing technology.

Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications (MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성)

  • Lee, Hyun-Ki;Han, Seung-Oh;Park, Jung-Ho;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF

Development of X-ray Image Processing Technology for Nondestructive Measurement of the Coating Thickness in the Simulated TRISO-coated Fuel Particle (모의 TRISO 핵연료입자 코팅층 두께 비파괴 측정을 위한 X-선 영상처리기술 개발)

  • Kim Woong-Ki;Lee Young-Woo;Park Ji-Yeon;Ra Sung-Woong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.669-672
    • /
    • 2006
  • 고온가스냉각 원자로에서는 고온 안정성 및 핵분열생성물 차단 성능이 우수한 TRISO(tri-tsotropic) 핵연료를 사용하고 있다. TRISO 핵연료 입자는 직경이 약 1 mm인 구 형태로 입자의 중심에는 직경 $0.5{\mu}m$의 핵연료 커널(kernel)이 포함되며 커널 외곽을 코팅 층이 에워싸고 있다. 이 코팅 층은 완충(buffer) PyC(pyrolytic carbon) 층, 내부 PyC 층, SiC 층, 그리고 외부 PyC 층으로 구성되어 있다. 각 코팅 층의 두께는 수십${\sim}$${\mu}m$ 범위이며, 본 연구에서는 각 코팅 층의 두께를 비파괴적으로 측정하기 위하여 마이크로포커스 X-선 발생장치와 고해상도 X-선 평판(flat panel) 검출기로 구성된 정밀한 X-선 래디오그래피 장치를 구성하고, $UO_2$ 핵물질 대신에 $ZrO_2$를 커널로 사용한 모의 TRISO 핵연료 입자에 대한 래디오그래피 영상을 획득한 후 디지털 영상처리기술을 이용하여 코팅 층 사이의 경계선이 구분 가능하도록 영상을 개선하고 디지털 영상처리 알고리즘을 개발하여 코팅 층의 두께를 측정하였다.

  • PDF

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF